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Abstract

The stability of fully developed pipe flows has been rigorously
studied both numerically and physically for smooth walled
pipes. However, a similar treatment for rough walled pipes is
lacking. In this paper we present a numerical study of the effect
of wall corrugation on the linear stability of fully developed pipe
flow. Linear stability to axisymmetric and non-axisymmetric
disturbances was investigated for corrugated pipe geometries
with constant average radius to wavelength ratios of unity. Six
non-dimensional corrugation amplitudes were investigated for
Reynolds numbers from 1500 to 11800 with computational do-
mains one corrugation wavelength long.

Results of the analysis showed that the presence of the wall
corrugations destabilized the flow to non-axisymmetric distur-
bances while stability to axisymmetric disturbances was main-
tained for all cases. The critical Reynolds number was found
to increase asymptotically toward infinity with diminishing
wall corrugation amplitude, consistent with findings for smooth
walled pipes, and to decrease to a minimum of 1770 before in-
creasing again as the wall corrugation amplitude was further in-
creased. Some correlation between the base flow topology and
the critical Reynolds number was observed. However, further
work would be required to draw any firm conclusions about this
relationship. For all cases of instability the critical azimuthal
wave number, β, was found to be greater than 0. This is in
contradiction to an earlier work suggesting that the critical az-
imuthal disturbance mode decays to β = 0, or axisymmetric
modes, for non-dimensional wall corrugation amplitudes, ε, less
than 0.1.

Introduction

Transition to turbulence in smooth walled pipes has been in-
vestigated by various means using both physical experiments
and numerical methods. Early experimental studies [10] found
that fully developed pipe flows became unstable at Reynolds
numbers ≈ 2000. However, numerous linear stability studies
since then have determined that for perfectly smooth walled
pipe flows the laminar profile is linearly stable to axisymmetric
and non-axisymmetric disturbances for all Reynolds numbers
[11, 8]. The process of transition observed in physical experi-
ment is thus thought to be triggered by non-linear perturbation
growth. Numerical investigations [7, 12] and experimental stud-
ies [6] have also noted that the flow becomes increasingly sen-
sitive to external dsturbances with the critical disturbance am-
plitude for transition falling off with Re−α, where α has some
dependence on the type of disturbance. Generally speaking val-
ues in the 1-1.5 range have been found though this problem is
far from completely solved.

These new findings for smooth walled pipes present an inter-
esting perspective on previous work on the stability of rough
walled pipes. Nikuradse’s [9] seminal paper on the laws of flow
in rough pipes established that random small scale roughness
had no influence on the critical Reynolds number. However,
with more recent results for smooth walled pipes suggesting
that uncontrolled disturbances inherent to the experimental ap-

paratus could have significant influence on the results, the ques-
tion of what effect wall roughness has on flow stability remains
open.

While there is very limited previous numerical work on rough
walled pipes, linear stability analysis for other wall bounded
flows, such as parallel plate flows, have found that the pres-
ence of roughness elements significantly alters the linear stabil-
ity of the base flow compared to the smooth wall case [3, 5].
Cotrell [4] aimed to address this by investigating the linear sta-
bility of fully developed corrugated pipe flow to axisymmetric
disturbances. Results of this study suggested the flow is linearly
unstable with the critical Reynolds number decreasing asymp-
totically as the wall amplitude was increased. Furthermore,
results of a cursory investigation of non-axisymmetric distur-
bances suggested that the critical azimuthal wave number was
zero for non-dimensional wall corrugation amplitudes less than
10%.

The purpose of the present work is to extend the body of
knowledge on the effect of wall roughness on flow stability by
conducting a linear stability analysis for fully developed flow
through a corrugated pipe. The work seeks initially to verify
the results presented by Cotrell and extend the knowledge by
considering more thoroughly the stability of the flow to non-
axisymmetric disturbances.

Formulation

The linearised Navier-Stokes equations written for an infinites-
imal perturbation u′ to a base flow U are:

∂tu′ =−
[
U.∇+(∇U)T .

]
u′−∇p′+Re−1

∇
2u′ (1)

∇.u′ = 0 (2)

Symbolically we can express the evolution equations for the
perturbation velocity as:

∂tu′ = Lu′ (3)

where L is a linear operator on u′. This equation allows solu-
tions of the form:

u′ (z,r,θ, t) = exp
(
λ jt
)

ũ j (z,r,θ) (4)

where λ j and ũ j are eigenvalues and eigenvectors of the lin-
ear operator L. The long term growth or decay of perturba-
tions is thus dependent on the sign of the eigenvalues L. For
reasons of numerical tractability, the state transition operator
A(T ) = exp(LT ) is used to evolve the solution over time in-
terval T [1]. As the eigensystems of A and L are related, the
stability of the system can be determined by the magnitude of
the dominant eigenvalue of A rather than the sign of the least



Figure 1: Spectral element meshes used. Non-dimensional corrugation amplitudes are (a) a=0.015904 (b) a=0.031808, (c) a=0.063612,
(d) a=0.095420, (e) a=0.127228, (f) a=0.159032

.

stable eigenvalue of L. This is numerically easier to implement
with any eigenvalue with magnitude greater than unity indicat-
ing instability, any eigenvalue with magnitude less than unity
indicating stability and any eigenvalue with magnitude equal to
unity indicating neutral stability.

Methodology

For the pipe geometry, the radius of the pipe as a function of the
axial co-ordinate z is given by R(z)/D = 0.5+0.5hcos(2πz/Λ)
where h is the peak-to-peak corrugation height normalized by
mean diameter, D, z is the axial coordinate and Λ is the axial
corrugation wavelength, here Λ = 0.5D = R. The average ra-
dius of the pipe, R, was thus set to 0.5 and the ratio R/Λ was set
to 1. Six corrugation amplitudes were investigated with compu-
tational domains limited to one wavelength as shown in Table 1
and Figure 1.

a

0.015904

0.031808

0.063612

0.095420

0.127228

0.159032

Table 1: Dimensionless corrugation amplitudes used

The numerical method is summarized briefly here. However,
for a full description the reader is directed to [2]. Direct nu-
merical simulation of the incompressible Navier-Stokes equa-
tions on the meridional semi-plane meshes shown in figure 1
was used to determine the base flows U. Spectral elements
were used for the discretization with spatial convergence ver-

ified by recording the converged axial velocity after repeated
refinement of the grid resolution for the highest corrugation
amplitude mesh at the highest nominal Reynolds number. The
grid resolution was chosen so that further refinement produced
changes in the converged axial velocity less than 0.01%. An
axial body force determined approximately from the nominal
Reynolds number was used to drive the flow, with the Reynolds
number for each case then determined from the bulk flow rate
and the average pipe diameter. Imposed boundary conditions
were no slip on the pipe wall and axial periodicity.

Stability to axisymmetric disturbances was determined by the
successful convergence of the base flow solutions. As the nu-
merical method used to determine the base flow was a time-
stepping method, any axisymmetric instability would result in
an inability to reach a steady state solution. Non-axisymmtric
disturbances are restricted to solutions periodic about the pipe
axis allowing decomposition of the azimuthal solutions into
Fourier modes. Due to the linearity of the problem, superpo-
sition allows the stability of the base flow to each Fourier mode
to be analysed separately. For each Fourier mode, Equation 4
thus becomes:

u′ (z,r,θ, t) = exp
(
λ jt
)

û j (z,r)exp(imθ) , (5)

where m is the azimuthal wave number. In this work the base
flows were analysed for stability to the first 10 Fourier modes.
To determine stability, dominant eigenvalues of A are sought by
projection of the linear operator onto a low dimensional Krylov
subspace followed by the application of an Arnoldi type itera-
tion method. Convergence of the dominant eigenvalue was as-
sumed once the residual fell below 1×10−6. This is a general
description of the technique. For a more detailed description the
reader is directed to [1].

Results

Base flows were successfully converged to steady state for all



bulk flow Reynolds numbers and pipe geometries suggesting
that the flow is linearly stable to all axisymmetric disturbances.

Two base flow topologies were observed dependent on the bulk
flow Reynolds number and wall corrugation amplitude. In the
first type, shown in figure 2, the flow was predominantly in the
direction of axial body forcing with attachment along the wall
maintained for the entire domain. In the second type, shown
in figure 3, the flow was observed to detach and reattach over
the corrugations with a recirculation zone forming in the widest
parts of the pipe.

Figure 2: Laminar base flow attached to the wall for the entire
computational domain. Dimensionless wall corrugation ampli-
tude is 0.063612, bulk flow Reynolds number is 1790, contours
of pressure shown with streamlines.

Figure 3: Base flow dettached from the wall with a recirculation
zone between corrugations, dimensionless wall corrugation am-
plitude is 0.159032, bulk flow Reynolds number is 7990, con-
tours of pressure shown with streamlines.

As a further check of axisymmetric stability two geometries
were analysed for axisymmetric stability using the same eigen-
value algorithm used for non-axisymmetric stability. Figure 4
shows the growth of the perturbations with increasing bulk flow
Reynolds number. These results show that the flow remains

Figure 4: Growth rate of axisymmetric perturbations against
bulk flow Reynolds number for dimensionless corrugation am-
plitudes a=0.159032 (dots) and a=0.127228 (crosses).

Figure 5: Critical Reynolds number against dimensionless wall
corrugation amplitude for non-axisymmetric disturbances

stable but becomes less so as the bulk flow Reynolds number
increases. For both cases, while the flow became less stable, the
growth of the perturbations remained negative and appeared to
be asymptoting toward zero or a negative growth rate, suggest-
ing the flow was stable for all Reynolds numbers.

These findings contradict the results of [4] who suggested that
flow through a corrugated pipe was unstable to axisymmetric
disturbances and that this was the primary mode of instability in
the limit of small corrugation amplitudes. Without a more rigor-
ous understanding of the methodology used by Cotrell however,
this discrepancy is left as a point of disagreement.

Results of the non-axisymmetric stability analysis found the
flow to be linearly unstable for most of the geometries con-
sidered. Figure 5 shows the variation of the critical Reynolds
number with the wall corrugation amplitude as determined by
this study. The results indicate that as the corrugation ampli-
tude becomes increasingly small the critical Reynolds number
becomes increasingly large, possibly asymptoting to infinity as
the amplitude approaches zero. The asymptotic nature of the
curve agrees with earlier findings of complete linear stability of
smooth walled pipes to non-axisymmetric disturbances.

At the other end of the spectrum, as the wall corrugation am-
plitude was increased the flow became increasingly unstable,
with the critical Reynolds number attaining a minimum value of
1770, before increasing with further increases in the wall cor-
rugation amplitude. Due to the limited number of wall corru-
gation amplitudes investigated and the linear interpolation be-
tween data points this minimum critical Reynolds number is of



limited accuracy but is a reasonable initial estimate.

The Fourier modes associated with the critical Reynolds num-
bers were also found to be contradictory to the findings of [4].
Figure 5 also shows the wave numbers of the least stable Fourier
modes for each of the wall corrugation amplitudes. Findings
in [4] suggest that the critical wave number for disturbances
decreases with wall corrugation amplitude, eventually reaching
zero (axisymmetric disturbances) for non-dimensional corruga-
tion amplitudes less than 0.1. In our study however, with cor-
rugation amplitudes less than 0.1, the critical azimuthal wave
number was 3 for the three cases that showed instability as
shown in figure 5.

A preliminary investigation of the influence of the computa-
tional domain on the results of both the axisymmetric and non-
axisymmetric stability analysis was done by extending the do-
main to two wavelengths and repeating the analysis for a di-
mensionless corrugation amplitude of 0.159032. Results of this
analysis found the extension of the computational domain had
no significant effect on the results of either stability analysis.
The maximum difference in the critical Reynolds number pre-
dicted for the two computational domains was 0.5%.

The results of this study also suggest some linkage between the
separation and reattachment of the base flow and an increase
in flow instability. For the three largest wall amplitude cases
a base flow with separation and reattachment over the corruga-
tions was observed for all Reynolds numbers and the resulting
critical Reynolds numbers were all found to be around 2000.
For the next lowest wall corrugation amplitude, separation of
the base flow is not observed initially but does occur for higher
Reynolds numbers. In this case the critical Reynolds number is
found to have increased significantly to 2750. Continuing this
trend, for the lowest wall corrugation amplitudes no separation
of the base flow was observed and the critical Reynolds number
was again found to have increased dramatically to 5945, a 115%
increase over the previous corrugation amplitude. For the low-
est wall corrugation amplitude no critical Reynolds number was
found, most likely due to it being outside the range of Reynolds
numbers considered.

Conclusions

In summary the results of this study suggest that axisymmetric
corrugations can have a significant effect on the stability of fully
developed pipe flows. Whilst the flow retained stability to ax-
isymmetric disturbances for all geometries and Reynolds num-
bers considered, instability to non-axisymmetric disturbances
was found for all but the lowest corrugation amplitude case.
Consistent with findings for smooth walled pipes, the criti-
cal Reynolds number was found to increase asymptotically to-
ward infinity as the corrugation amplitude became vanishingly
small. As the corrugation amplitude was increased the critical
Reynolds number attained a minimum value before beginning
to increase again. In our study this minimum value was found
to be 1770 for a corrugation amplitude of 0.127228 units. Some
correlation between the structure of the base flow, specifically
the onset of separation and reattachment in the bulge region,
and the critical Reynolds number was observed. However, fur-
ther work would be needed to confirm this link and provide an
explanation for it.
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