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Abstract

Numerical differencing schemes are subject to disperaiee a
dissipative errors, which in one dimension are functions of
wavenumber. When these schemes are applied in two or three
dimensions, the errors become functions of both wavenum-
ber and the direction of wave propagation. Spectral arglysi
and numerical examples using the scalar advection equat&on
used to assess two finite difference schemes on two-dimaisio
grids of varying aspect ratio. Itis shown that waves can nbt o
propagate at the wrong speed—as per the dispersive ergns se
in the one dimensional case—but also in the wrong direction.

Introduction

This paper outlines the calculation of group velocity uspgc-
tral analysis, then uses this analysis to predict the prati@gof
waves advecting over a two-dimensional grid using diffefen
nite difference schemes. The aspect ratio of the grid Ay/Ay,

and the angle of propagation are varied. These predictians a
then compared to the results of numerical experiments and th
exact solution.

The use of spectral analysis (also called wavenumber oiiétrour
analysis) in computational numerics is well establishbdre-
fore, this paper will not discuss the underlying theory itaile
deferring to the treatments given elsewhere sucldlees{d [9].

Much of the literature using spectral analysis is only apin

one dimension (e.g.7]). However, in two dimensions the res-
olution of a numerical scheme is no longer only a function of
wavenumber, but it is also dependent on the angle of wave prop
agation. Therefore, if we naively extend the one dimengiona
analysis to two or three dimensions, we omit important infor
mation regarding the dependence that dispersion has on wave
propagation direction. Even papers that deal with anigpgiro
e.g. B, 3, 6], are of somewhat limited scope, restricting them-
selves to assessing phase velocity rather than group tyetoa

not addressing the direction issue.

It is shown herein that the polar plots of phase speed that are
conventionally used to show the anisotropy in two-dimemaio
cases cannot explain the phenomena observed, and thagthe us
of group velocity as determined via the spectral analysis co
rectly predicts the location of the wave.

Finite Difference Schemes

Finite difference schemes can be divided into three bro&d ca
egories: conventional central or upwind difference scleme
compact (or Padé) schemes as introduced by [@jeahd the
‘dispersion relation preserving’ (DRP) (or similarly apised)
schemes as introduced by Tam and WeHb fFor the purposes

of exploring the anisotropy of finite difference schemesnx
ples from the first two categories were selected for analysis
They are the fourth order central difference scheme (CDS4):
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and the sixth order compact difference scheme (COM6):
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wherea = £, a= %, andb = {. Ais the grid spacing angis
a scalar quantity.

Spectral Analysis

Spectral analysis can tell us the wavenumber range that a nu-
merical scheme can accurately resolve. In order to illtestra
this, the concept of equivalent wavenumber can be used w sho
the relationship between the exact wavenumkeand the nu-
merical equivalents*. The equivalent wavenumber for the spa-
tial semi-discretisations using the schemes listed ataree,
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where the coefficients are as noted for equat@rapove.

When plotted as in figuré, the equivalent wavenumber of all
schemes approximates the exact solution at low wavenumber.
As wavenumber increases, the schemes start to drop off-at dif
ferent points. The longer the scheme approximates thetexac
relationship, the better its resolution properties. Wititie ef-
fects of temporal discretisation must be taken into accasnt
well, this relationship essentially determines the phasecity,
group velocity, amplification (or attenuation) factor, atidsi-
pation of a numerical scheme.

Many previous analyses (e.@] and [6]) either neglect or omit
the effects of temporal discretisation. Whilst such efeate

not necessarily negligible they will not be dealt with hehe-
stead, the examples that follow all have a Courant (CFL) hum-
ber small enough so that they are effectively equal to thé-sem
discretisation case, as p&},[which showed how the dispersion
relation of the full-discretisation approaches the disjmerrela-
tion of the spatial semi-discretisation as the timestepeghes
zero.

A typical assessment of the anisotropy of a numerical scheme
will consist of a plot such as the one shown in fig@reThis
shows how, as the angle of propagatiényaries, the ratio of
numerical to exact phase speed changes, thereby illumg i
anisotropic behaviour of the scheme. However, implicitliols
afigure is the assumption that the wave is aligned with trezdir
tion of propagation, which requires that the frequency eont

of the wave be such thadg, /ky = Ay/Ax = tan(8). Whilst the
linearised Euler and shallow water equations, for exanialee
axisymmetric solutions for which the above is true; thisd$ n
necessarily the general cagg. [Consider a wave aligned with

0 = 0 degrees, under the advection equation, this can be prop-
agated in any direction. Furthermore, this style of figurlyon
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Figure 1: Equivalent wavenumber for CDS4 and COMS6.
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Figure 2: Ratio of numerical phase speet, to exact phase
speedg, for the fourth order central difference scheme at non-
dimensional wavenumbers kh = 11/4, T1/2, 3r1/4, andm, with
CFL = 0.1CFLmax =~ 0.21 (CFLnax is the maximum CFL for
stability).

reveals thespeed of the wave, and not thdirection of propaga-
tion.

Using an example wave with a non-dimensional wavenumber
of kA = kAx = 11/2 aligned and propagating @t= 75 degrees,
figure 2 shows that the phase velocity ratio is approximately
0.87 as marked bp. However, as we shall see later, this fails
to explain any of the behaviour observed in our numerical ex-
periments. This can only be captured through the use of group
velocity [8].

The numerical group velocity in theandy directions,ug, =
d d -
N andvg, = a—‘l‘jy“ respectively, can be calculated thi |
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wherez is the numerical amplitude factor, which is dependent
on the equivalent wavenumber and the temporal discredisati
method. In this case, the temporal discretisation is foartter
Runge-Kutta, and is
. 1.
Z= 11y (UK VG Ay) + 5 (i (uk +VKAy))?

- %B(iAt(uk;Ax+vk;Ay))34r z—tl(iAt(ukiAx—i-vk;Ay))“. @)

However, unlike phase velocity, group velocity can be nega-
tive, which makes it difficult to present on a polar plot such
as figure2. Instead, in figure3 the x andy group velocities,

as calculated using equatiors) énd @), have been converted
to velocity magnitude and angle, and the figure ‘inverted’ so
that the contours are the values of group velocity rathen tha
wavenumber, and the axes represent wavenumber rather than
phase speed. FiguBga) shows the velocity magnitude and fig-
ure 3(b) shows the error in the numerical propagation angle,
Berror = tan(vg, /ug, ) — 6 for the fourth order central difference
scheme.

Returning to the example with a non-dimensional wavenumber
of /2 aligned and propagating at 75 degrees. This point is
marked withe on figure3. Referring to figure3(a) we find that

the ratio in velocity magnitude is slightly less than 0.5m&i
larly for figure3(b) we find an error in propagation angle that is
slightly more negative thar 15 degrees.

Results

This section compares the wave propagation of the two numer-
ical methods under the two-dimensional scalar advectiom-eq
tion 5 5 5
¢ P P

at +“ax+"ay =0
with the predictions made using group velocity as described
above. The numerical experiment uses a two-dimensional gri
initialised with a single frequency wave oriented in a garti
lar direction. A Gaussian modulation has also been appfied i
order to avoid the introduction of high frequency conteratth
arises when there are discontinuities,

8)
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where kg is the wavenumber® = arctar(v/u) is the an-
gle the propagation velocity field makes to theaxis,
a=cog1/2—0)?/(20%) +sin(1/2— 6)?/(203),

b= —sin(2(1/2—8))/(403) +sin(2(1/2— 8)) /(40%),

c = sin(r/2—6)?/(20%) + cogm/2—6)?/(203), 0z =1, and
0§ =1. An example of the initial wave witkoA = 11/2 and
6 = 75 degrees is shown in figudéa).

The result after four seconds can be seen in the contours of
figure 4(b). Also shown in figured(b) is a solid arrow, which
shows the position of the centre of the wave according toxhe e
act solution. The dashed arrow shows the position of theeent
of the wave as predicted by the group velocity. It corresgond
well with the numerical result. The solid line is a locus ofrge

that shows the possible range (depending on frequency)-of po
sitions for waves aligned with the propagating velocitg.(iin

this cased = 75 degrees). Note that the only point on this line
that is in the same direction as the propagating velocity lkea
very top of the line, which corresponds to a non-dimensional
wavenumber near zero. Any other waves will not propagate in
the direction of the advection field despite being aligneith i

The result seen here can be related back to the previoussdiscu
sion on figure and3. In the former, the ratio of phase veloc-
ity magnitude was found to be approximately 0.87; in theslatt
case the ratio of group velocity magnitude was slightly thas

0.5 and the propagation angle error was approximatdl§ de-
grees. In figured(b), we can see that the dashed arrow is ap-
proximately half the magnitude of the solid arrow represgnt
the exact solution, and it lies at an angle of 15 degreeslhess t
the exact propagation angle. In comparison, the phaseityeloc
magnitude ratio offers no insight into the numerical result

A second numerical experiment was conducted in which the ini
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Figure 3: Figures showing (a) the magnitude of the groupcigl@nd (b) the error in propagation angle, for the fourtdesrcentral
difference scheme with =1, CFL= 0.1CFLmnax~ 0.21.
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Figure 4: (a) The initial condition: a Gaussian modulatedevaf wavenumbekoAy = 11/2 aligned at an angle of 75 degrees. (b)
The position of the wave shown in (a) after propagating far feeconds with the fourth order central difference schemeevelocity
field of magnitude 1 and direction 75 degrees counter closévriom thex axis (i.e. u=1x cog75°), v=1x sin(75°)). (c) The
spread of waves of an initially Gaussian distribution aftepagating for four seconds under the same conditionssasided in (b).
CFL = 0.1CFLmnax~ 0.21 for both (b) and (c).

tial condition was a Gaussian profile, It can be seen that in each instance, the dashed arrow poegict
made by the group velocity are in agreement with the numeri-
@ = e 1000+ (10) cal method. It should also be clear that, other than in thé wel
resolved case of figurg(g), the propagation of the wave is not
Unlike the initial condition defined by equatio®)( such a in the same direction as the propagating velocity.

profile theoretically contains all frequencies. Therefoire ) ] ) )

figure 4(c) the waves of an initial Gaussian profile propa- Whilst _the higher reso_lutlon scheme COMé shows improved
gate in all directions. Overlayed on this is a ‘grid’ of non- ~ resolution at low to mid wavenumbers, it has a much larger
dimensional wavenumbers in tieandy directions—kyAy and spread of waves at high wavenumbers, as seen in fig{jre

kyAy respectively—between 0 amdat increments oft/8 (with _

zero corresponding to the upper and rightmost lines). The ex Conclusions

tent of the grid shows the spread of any possible wave prepaga spectral analysis was used to predict the group velocities f
tion as predicted by the spectral analysis. In comparisdh Wi o numerical schemes, and a range of propagation angles and
the single line shown on figusb), figure4(c) shows the case  grid aspect ratios. It was found that group velocity as ted
when the wave is not necessarily aligned with the propagatin by spectral analysis accurately reflects the results seemriu-
velocity. merical experiments. It was also found that the direction of
propagation of waves was not consistent with the advecton v
locity, regardless of the alignment of the wave. Such behavi

is not reflected in the typical anisotropy diagrams seen én th

In order to show the generality of the analysis, the sameyaisal
has been repeated for two numerical schemes with a propaga-
tion angle of 30 degrees. The results are shown in figuiighe

first two rows show the CDS4 scheme, the top row being for literature.

a grid aspect ratio of one, i.e\ = 1, and the second row for

A = 0.5. The bottom row shows the COM6 scheme itk 1. Acknowledgements

The left-most plots show the position okglx = 11/2 wave, the M.E. Young would like to acknowledge DSTO for supporting

centre plots show kyAy = 311/4 wave, and the right-most plots their candidature for a Masters of Engineering Science.
show the Gaussian wave.
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Figure 5: Example numerical results overlayed with the tpmsiof wave as given by the exact solution and as predictetthégroup
velocity calculated via the spectral analysis. The first mthe CDS4 scheme with= 1 and CFL= 0.1CFLnax~ 0.21; the second
row is the CDS4 scheme with = 0.5 and CFL= 0.1CFLmax ~ 0.21; and the bottom row is the COM6 scheme with= 1 and
CFL = 0.1CFLmax~ 0.14.
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