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Abstract

Numerical differencing schemes are subject to dispersive and
dissipative errors, which in one dimension are functions of
wavenumber. When these schemes are applied in two or three
dimensions, the errors become functions of both wavenum-
ber and the direction of wave propagation. Spectral analysis
and numerical examples using the scalar advection equationare
used to assess two finite difference schemes on two-dimensional
grids of varying aspect ratio. It is shown that waves can not only
propagate at the wrong speed—as per the dispersive errors seen
in the one dimensional case—but also in the wrong direction.

Introduction

This paper outlines the calculation of group velocity usingspec-
tral analysis, then uses this analysis to predict the propagation of
waves advecting over a two-dimensional grid using different fi-
nite difference schemes. The aspect ratio of the grid,λ = ∆y/∆x,
and the angle of propagation are varied. These predictions are
then compared to the results of numerical experiments and the
exact solution.

The use of spectral analysis (also called wavenumber or Fourier
analysis) in computational numerics is well established; there-
fore, this paper will not discuss the underlying theory in detail,
deferring to the treatments given elsewhere such as [4] and [9].

Much of the literature using spectral analysis is only applied in
one dimension (e.g. [7]). However, in two dimensions the res-
olution of a numerical scheme is no longer only a function of
wavenumber, but it is also dependent on the angle of wave prop-
agation. Therefore, if we naively extend the one dimensional
analysis to two or three dimensions, we omit important infor-
mation regarding the dependence that dispersion has on wave
propagation direction. Even papers that deal with anisotropy,
e.g. [2, 3, 6], are of somewhat limited scope, restricting them-
selves to assessing phase velocity rather than group velocity and
not addressing the direction issue.

It is shown herein that the polar plots of phase speed that are
conventionally used to show the anisotropy in two-dimensional
cases cannot explain the phenomena observed, and that the use
of group velocity as determined via the spectral analysis cor-
rectly predicts the location of the wave.

Finite Difference Schemes

Finite difference schemes can be divided into three broad cat-
egories: conventional central or upwind difference schemes;
compact (or Padé) schemes as introduced by Lele [2]; and the
‘dispersion relation preserving’ (DRP) (or similarly optimised)
schemes as introduced by Tam and Webb [7]. For the purposes
of exploring the anisotropy of finite difference schemes, exam-
ples from the first two categories were selected for analysis.
They are the fourth order central difference scheme (CDS4):

φ′i =
φi−2−8φi−1 +8φi+1−φi+2

12∆
; (1)

and the sixth order compact difference scheme (COM6):

αφ′i−1 +φ′i +αφ′i+1 = b
φi+2−φi−2

4∆
+a

φi+1−φi−1

2∆
(2)

whereα = 1
3 , a = 14

9 , andb = 1
9 . ∆ is the grid spacing andφ is

a scalar quantity.

Spectral Analysis

Spectral analysis can tell us the wavenumber range that a nu-
merical scheme can accurately resolve. In order to illustrate
this, the concept of equivalent wavenumber can be used to show
the relationship between the exact wavenumber,k, and the nu-
merical equivalent,k∗. The equivalent wavenumber for the spa-
tial semi-discretisations using the schemes listed above,are

(k∗∆)CDS4=
4
3

sin(k∆)−
1
6

sin(2k∆); (3)

(k∗∆)COM6 =
asin(k∆)+ b

2 sin(2k∆)

1+2αcos(k∆)
; (4)

where the coefficients are as noted for equation (2) above.

When plotted as in figure1, the equivalent wavenumber of all
schemes approximates the exact solution at low wavenumber.
As wavenumber increases, the schemes start to drop off at dif-
ferent points. The longer the scheme approximates the ‘exact’
relationship, the better its resolution properties. Whilst the ef-
fects of temporal discretisation must be taken into accountas
well, this relationship essentially determines the phase velocity,
group velocity, amplification (or attenuation) factor, anddissi-
pation of a numerical scheme.

Many previous analyses (e.g. [3] and [6]) either neglect or omit
the effects of temporal discretisation. Whilst such effects are
not necessarily negligible they will not be dealt with here.In-
stead, the examples that follow all have a Courant (CFL) num-
ber small enough so that they are effectively equal to the semi-
discretisation case, as per [9], which showed how the dispersion
relation of the full-discretisation approaches the dispersion rela-
tion of the spatial semi-discretisation as the timestep approaches
zero.

A typical assessment of the anisotropy of a numerical scheme
will consist of a plot such as the one shown in figure2. This
shows how, as the angle of propagation,θ, varies, the ratio of
numerical to exact phase speed changes, thereby illustrating the
anisotropic behaviour of the scheme. However, implicit in such
a figure is the assumption that the wave is aligned with the direc-
tion of propagation, which requires that the frequency content
of the wave be such thatky/kx = ∆y/∆x = tan(θ). Whilst the
linearised Euler and shallow water equations, for example,have
axisymmetric solutions for which the above is true; this is not
necessarily the general case [1]. Consider a wave aligned with
θ = 0 degrees, under the advection equation, this can be prop-
agated in any direction. Furthermore, this style of figure only
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Figure 1: Equivalent wavenumber for CDS4 and COM6.
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Figure 2: Ratio of numerical phase speed,c∗, to exact phase
speed,c, for the fourth order central difference scheme at non-
dimensional wavenumbers ofk∆ = π/4, π/2, 3π/4, andπ, with
CFL = 0.1CFLmax ≈ 0.21 (CFLmax is the maximum CFL for
stability).

reveals thespeed of the wave, and not thedirection of propaga-
tion.

Using an example wave with a non-dimensional wavenumber
of k∆ = k∆x = π/2 aligned and propagating atθ = 75 degrees,
figure 2 shows that the phase velocity ratio is approximately
0.87 as marked by•. However, as we shall see later, this fails
to explain any of the behaviour observed in our numerical ex-
periments. This can only be captured through the use of group
velocity [8].

The numerical group velocity in thex andy directions,ugN =
∂ωN
∂kx

andvgN = ∂ωN
∂ky

respectively, can be calculated thus [5]

ugN

ugexact

=
ugN

u
=

−1
u∆t

(

zr
∂zi
∂kx

− zi
∂zr
∂kx

)

|z|2
(5)

vgN

vgexact

=
vgN

v
=

−1
v∆t

(

zr
∂zi
∂ky

− zi
∂zr
∂ky

)

|z|2
, (6)

wherez is the numerical amplitude factor, which is dependent
on the equivalent wavenumber and the temporal discretisation
method. In this case, the temporal discretisation is fourthorder
Runge-Kutta, andz is

z = 1− i∆t (uk∗x ∆x +vk∗y ∆y)+
1
2
(i∆t(uk∗x ∆x +vk∗y ∆y))

2

−
1
6
(i∆t(uk∗x ∆x +vk∗y ∆y))

3 +
1
24

(i∆t(uk∗x ∆x +vk∗y ∆y))
4. (7)

However, unlike phase velocity, group velocity can be nega-
tive, which makes it difficult to present on a polar plot such
as figure2. Instead, in figure3 the x and y group velocities,
as calculated using equations (5) and (6), have been converted
to velocity magnitude and angle, and the figure ‘inverted’ so
that the contours are the values of group velocity rather than
wavenumber, and the axes represent wavenumber rather than
phase speed. Figure3(a) shows the velocity magnitude and fig-
ure 3(b) shows the error in the numerical propagation angle,
θerror = tan(vgN /ugN )−θ for the fourth order central difference
scheme.

Returning to the example with a non-dimensional wavenumber
of π/2 aligned and propagating at 75 degrees. This point is
marked with• on figure3. Referring to figure3(a) we find that
the ratio in velocity magnitude is slightly less than 0.5. Simi-
larly for figure3(b) we find an error in propagation angle that is
slightly more negative than−15 degrees.

Results

This section compares the wave propagation of the two numer-
ical methods under the two-dimensional scalar advection equa-
tion

∂φ
∂t

+u
∂φ
∂x

+v
∂φ
∂y

= 0 (8)

with the predictions made using group velocity as described
above. The numerical experiment uses a two-dimensional grid
initialised with a single frequency wave oriented in a particu-
lar direction. A Gaussian modulation has also been applied in
order to avoid the introduction of high frequency content that
arises when there are discontinuities,

φ0 = e−ax2+2bxy+cy2
sin(k0(cos(θ)x+sin(θ)y)) , (9)

where k0 is the wavenumber,θ = arctan(v/u) is the an-
gle the propagation velocity field makes to thex-axis,
a = cos(π/2−θ)2/(2σ2

x)+sin(π/2−θ)2/(2σ2
y),

b = −sin(2(π/2−θ))/(4σ2
x )+sin(2(π/2−θ))/(4σ2

y ),

c = sin(π/2−θ)2/(2σ2
x)+cos(π/2−θ)2/(2σ2

y), σ2
x = 1, and

σ2
y = 1. An example of the initial wave withk0∆ = π/2 and

θ = 75 degrees is shown in figure4(a).

The result after four seconds can be seen in the contours of
figure 4(b). Also shown in figure4(b) is a solid arrow, which
shows the position of the centre of the wave according to the ex-
act solution. The dashed arrow shows the position of the centre
of the wave as predicted by the group velocity. It corresponds
well with the numerical result. The solid line is a locus of points
that shows the possible range (depending on frequency) of po-
sitions for waves aligned with the propagating velocity (i.e. in
this caseθ = 75 degrees). Note that the only point on this line
that is in the same direction as the propagating velocity is at the
very top of the line, which corresponds to a non-dimensional
wavenumber near zero. Any other waves will not propagate in
the direction of the advection field despite being aligned with it.

The result seen here can be related back to the previous discus-
sion on figures2 and3. In the former, the ratio of phase veloc-
ity magnitude was found to be approximately 0.87; in the latter
case the ratio of group velocity magnitude was slightly lessthan
0.5 and the propagation angle error was approximately−15 de-
grees. In figure4(b), we can see that the dashed arrow is ap-
proximately half the magnitude of the solid arrow representing
the exact solution, and it lies at an angle of 15 degrees less than
the exact propagation angle. In comparison, the phase velocity
magnitude ratio offers no insight into the numerical result.

A second numerical experiment was conducted in which the ini-
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Figure 3: Figures showing (a) the magnitude of the group velocity and (b) the error in propagation angle, for the fourth order central
difference scheme withλ = 1, CFL= 0.1CFLmax≈ 0.21.
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(a)k0∆x = π/2, t = 0
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(b) k0∆x = π/2, t = 4
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(c) t = 4

Figure 4: (a) The initial condition: a Gaussian modulated wave of wavenumberk0∆x = π/2 aligned at an angle of 75 degrees. (b)
The position of the wave shown in (a) after propagating for four seconds with the fourth order central difference scheme in a velocity
field of magnitude 1 and direction 75 degrees counter clockwise from thex axis (i.e. u = 1× cos(75◦), v = 1× sin(75◦)). (c) The
spread of waves of an initially Gaussian distribution afterpropagating for four seconds under the same conditions as described in (b).
CFL = 0.1CFLmax≈ 0.21 for both (b) and (c).

tial condition was a Gaussian profile,

φ0 = e−1000(x2+y2). (10)

Unlike the initial condition defined by equation (9), such a
profile theoretically contains all frequencies. Therefore, in
figure 4(c) the waves of an initial Gaussian profile propa-
gate in all directions. Overlayed on this is a ‘grid’ of non-
dimensional wavenumbers in thex andy directions—kx∆x and
ky∆y respectively—between 0 andπ at increments ofπ/8 (with
zero corresponding to the upper and rightmost lines). The ex-
tent of the grid shows the spread of any possible wave propaga-
tion as predicted by the spectral analysis. In comparison with
the single line shown on figure4(b), figure4(c) shows the case
when the wave is not necessarily aligned with the propagating
velocity.

In order to show the generality of the analysis, the same analysis
has been repeated for two numerical schemes with a propaga-
tion angle of 30 degrees. The results are shown in figure5. The
first two rows show the CDS4 scheme, the top row being for
a grid aspect ratio of one, i.e.λ = 1, and the second row for
λ = 0.5. The bottom row shows the COM6 scheme withλ = 1.
The left-most plots show the position of ak0∆x = π/2 wave, the
centre plots show ak0∆x = 3π/4 wave, and the right-most plots
show the Gaussian wave.

It can be seen that in each instance, the dashed arrow predictions
made by the group velocity are in agreement with the numeri-
cal method. It should also be clear that, other than in the well
resolved case of figure5(g), the propagation of the wave is not
in the same direction as the propagating velocity.

Whilst the higher resolution scheme COM6 shows improved
resolution at low to mid wavenumbers, it has a much larger
spread of waves at high wavenumbers, as seen in figure5(i).

Conclusions

Spectral analysis was used to predict the group velocities for
two numerical schemes, and a range of propagation angles and
grid aspect ratios. It was found that group velocity as predicted
by spectral analysis accurately reflects the results seen from nu-
merical experiments. It was also found that the direction of
propagation of waves was not consistent with the advection ve-
locity, regardless of the alignment of the wave. Such behaviour
is not reflected in the typical anisotropy diagrams seen in the
literature.
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(a)CDS4,k0∆x = π/2, λ = 1
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(b) CDS4,k0∆x = 3π/4, λ = 1
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(c) CDS4,λ = 1
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(d) CDS4,k0∆x = π/2, λ = 0.5
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(e)CDS4,k0∆x = 3π/4, λ = 0.5
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(f) CDS4,λ = 0.5
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(g) COM6,k0∆x = π/2, λ = 1
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(h) COM6,k0∆x = 3π/4, λ = 1
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(i) COM6,λ = 1

Figure 5: Example numerical results overlayed with the position of wave as given by the exact solution and as predicted bythe group
velocity calculated via the spectral analysis. The first rowis the CDS4 scheme withλ = 1 and CFL= 0.1CFLmax≈ 0.21; the second
row is the CDS4 scheme withλ = 0.5 and CFL= 0.1CFLmax ≈ 0.21; and the bottom row is the COM6 scheme withλ = 1 and
CFL = 0.1CFLmax≈ 0.14.
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