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Abstract

Numerical simulation was conducted of turbulent natural con-
vection in domains representing the sidearm of a lake or water
reservoir. Lateral temperature gradients exist due to the varying
depth of the cavity, resulting in lateral circulation. These flows
are important in a reservoir as they can carry with them parti-
cles and various pollutants, transporting and mixing them with
the central section. Therefore study in this area is important in
water quality management.

The domains studied include a two-dimensional triangular cav-
ity as well as more realistic three-dimensional setups. Heat in-
put is through a solar radiation model consisting of a heat flux
from the sloped bottom boundaries as well as an internal heating
source term in the body of the water. The heat flux at the bot-
tom boundary induces natural convection including convective
plumes and a large scale circulation, while the internal heating
acts to stabilise the flow through the generation of a stable den-
sity stratification.

The simulations use a Cartesian grid with an Immersed Bound-
ary Method (IBM) for sloped surfaces on the bottom and sides.
The IBM involves using forcing terms in the flow equations to
represent a surface. This surface may fall anywhere within a
computational cell, so there is no requirement for the grid to be
aligned with the surface. Other approaches commonly used in-
clude cut cells for Cartesian grids, body fitted coordinates, and
unstructured meshes. The IBM has the advantage of greatly
simplifying grid generation and boundary condition implemen-
tation, while still being less computationally expensive than the
alternatives.

Introduction

The problem of a reservoir sidearm has received only limited
attention in the literature. Some examples are [4, 5, 6, 8]. These
include scaling analysis and numerical simulation, but always
for a simple two-dimensional triangular domain. This sim-
plification is a good approximation for the shallow near-shore
region of some reservoirs, in particular natural lakes, where
the shoreline is quite straight, however it ignores the three-
dimensional flow effects.

This paper aims to extend this work to a more realistic sidearm,
as is quite common in man-made reservoirs. These sidearms
are narrow sections formed when a river is dammed and an area
flooded. The two-dimensional triangle is no longer represen-
tative, but rather a tetrahedron is a better approximation. This
tetrahedron is not regular, and does not have a base as such.
Rather one face is horizontal at the top, the reservoir surface,
and one face is vertical, representing the interface between the
sidearm and the main reservoir body.

Method

Figure 1 shows the setup of the computational domain. An im-
portant feature of this problem is that the heating is modelled as
a solar flux at the surface. The radiation is gradually absorbed

Figure 1: This figure shows the domain and coordinate axes for
a tetrahedron representing a reservoir sidearm. In reality the full
computational domain would be a few cells larger than shown
to accommodate the Immersed Boundary ghost cells.

as it penetrates the water, thus providing an internal heating
source. The intensity of the radiation will decrease with depth,
as described by Beers Law (see for example [9]). Lei et al [5]
approximate the attenuation coefficient as having a single value
across all wavelengths, so the source term for internal heating
in the cavity is

S = H0ηeηz, (1)

where H0 is the surface heating intensity, z is the negative dis-
tance through which the radiation has travelled, and η is the
attenuation coefficient.

This means that the heating intensity close to the surface will
be greater. Since it is not horizontally dependent, this input will
not cause any lateral temperature gradient and therefore will
not induce circulation in the cavity. This internal heating will
actually work to form a stably stratified temperature structure.

In shallow areas some of the radiation will penetrate the entire
depth of the water, heating the bottom surface and consequently
heating the bottom fluid layer. It is for this reason that the shal-
low section of a reservoir is interesting. The thermal boundary
layer formed at the bottom surface does induce instability in the
flow, and is also horizontally dependent.

The boundary condition at the bottom of the cavity is modelled
in [5] as a constant flux

∂T
∂n̂

=−1
k

H0eηz, (2)

which assumes that all radiation reaching the surface is ab-
sorbed and the boundary is insulated on the external side. In
Equation 2, n̂ is the direction normal to the boundary and k is
the thermal diffusivity.

The result is that there are effectively two competing heat
sources. The bottom surface heat flux is acting to drive a cir-
culation in the cavity, while the radiation absorption which is



greatest near the top is acting to stabilise the water. At mod-
erate Rayleigh numbers this results in a bulk flow up along the
bottom surfaces toward the tip and out along the top.

The boundary conditions at the end wall are non-slip (u = v =

w = 0), while the top surface is stress-free ( ∂u
∂z

= 0, ∂v
∂z

= 0,w =

0). The end wall is insulated, as is the top surface, since it is
assumed any heat loss or gain through the surface is small when
compared with the radiation absorption. This is also consistent
with the 2D triangle simulations in the literature [5, 1].

One issue here is that over time the average temperature will
continue to rise since there are no heat sinks. The simulation
will reach a quasi-steady state, however, where the temperature
over the whole cavity is rising at the same rate.

Numerical Method

The original solver used was developed and validated by Kirk-
patrick et al [2, 3]. It uses a finite volume, fractional step,
pressure correction method. The code solves the Navier-Stokes
equations using a 4th order Central Difference scheme for mo-
mentum, 4th order Central Difference scheme with ULTRA flux
limiter [7] for scalars and is 2nd order accurate in time.

The solver has been modified to include an Immersed Bound-
ary Method. The method used for the IBM is based on [10] and
[11], and these papers contain a more comprehensive descrip-
tion of the procedure. The IBM involves the addition of an extra
term to the momentum equations fm, and an extra term to the
energy equation fe, so the equations solved become

∇ ·u = 0, (3)

∂u
∂t

+u ·∇u =− 1
ρre f

∇P+
ρ−ρre f

ρre f
g+ν∇2u+ fm, (4)

∂T
∂t

+u ·∇T =
ν

Pr
∇2T + fe. (5)

The process for determining the forcing terms involves firstly
using a bi-linear interpolation method to calculate actual val-
ues on the virtual boundary. The advantage of using the IBM
is that this virtual boundary does not need to coincide with a
grid point. These actual values on the virtual boundary are then
compared to the desired value at that location. From this dif-
ference the forcing term is calculated, acting to drive the actual
value toward the desired value.

In the case of Dirichlet boundary conditions the desired veloc-
ities and desired temperatures are set to a constant value. For
a Neumann boundary condition an extra layer of virtual nodes
is created a small distance inside the immersed boundary nodes
so that each node on the boundary has a corresponding node
in the flow. The desired temperature is then calculated at each
timestep using the extra nodes in the flow in order to give the
desired temperature gradient at the boundary.

Results

The simulations shown are for a grid of 320× 80× 40 cells.
The aspect ratio for the height of the cavity versus the length
is AL = H/L = 0.14 and the aspect ratio for the height versus
the half-width is AW = 2H/W = 1. The purpose of the simula-
tions is to look at the shallow edge section of a reservoir, so the
maximum depth has been set to H = η−1, meaning there will
be appreciable radiation penetrating the full depth at all but the
deepest parts of the cavity. The critical parameters in this flow
are the Prandtl and Grashof numbers which are given respec-
tively by

Pr =
ν
k
, (6)

Figure 2: Diagram showing the grid in the vicinity of the Im-
mersed Boundary. The small black circles are the virtual bound-
ary points and have coordinates xs. The large filled circles be-
low the virtual boundary represent points on the computational
grid outside the flow where the forcing functions are applied.
The large rings on the other side of the boundary are in the flow,
meaning the forcing function is not applied, but they are used to
calculate the properties at the virtual boundary points.

Gr =
gβH0H4

ν2k
. (7)

In all results presented here the Prandtl and Grashof numbers
are kept constant at Pr = 7.0 and Gr = 1.3 × 104, with the
exception of Figure 8 which has a higher Grashof number of
Gr = 5.8× 105. At the lower Gr value the flow is not yet tur-
bulent. The apparent fluctuations close to the boundary seen in
Figure 6 are actually just an idiosyncrasy of the visualisation.

Figure 3: Contour plot of temperature on a 2D cross section
near the deep end of the cavity, taken through y = 1

8 L. Intervals
are 0.1 non-dimensional temperature units, with the maximum
near the top left and top right corners.

Discussion

Cross sections of the flow, taken perpendicular to the y axis,
remain similar in appearance for the length of the cavity. Con-
tour and vector plots taken toward the deep end of the cavity
are shown in Figures 3 and 4. A very strong flow up the sloped
sides, across the top and down the centre is evident in the vector
plot. The temperature contours show that while the temperature
gradient is greatest near the top corners, there is significant heat
transport along the surface away from the top corners. This flow
is symmetric about the centreline, and each half is quite similar
to the flow seen in 2D simulations of a triangular cavity [5].

In contrast, cross sections showing flow along the length of the
cavity are much different. In Figure 6 we see that the flow is
similar near the tip, however Figure 5 shows that for most of



Figure 5: Velocity vector plot on a 2D cross section along the cavity centreline, through x = 1
2W . Flow at the deep end is down the

slope at the bottom and towards the shallow end at the top, while the opposite flow exists close to the shallow end.

Figure 6: Vector plot zoomed in on the tip, from y = L to y = 1
2 L, along the cavity centreline at x = 1

2W . This figure more clearly shows
the flow up the bottom slope and out along the top.

Figure 4: Velocity vectors on a 2D cross section near the deep
end of the cavity, taken through y = 1

8 L

the domain the flow is actually down the slope, the opposite to
what is seen in the flow across the cavity or in simulations of a
2D triangular domain. Overall though the flow across the do-
main dominates, resulting in a much weaker flow field in planes
perpendicular to the x axis.

Figure 7 shows a large horizontal temperature gradient close to
the shallow tip of the cavity, with very small gradient past about
y = 3

4 L. This shows that there is low heat transport away from
the shallow end of the cavity, which supports what is shown in
the vector plots. In 2D triangular cavity simulations we see a
strong flow away from the tip along the surface, which allows
for much higher heat transport away from the tip resulting in
a relatively consistent temperature gradient over the length of
the cavity. This outflow near the surface is not seen, giving
the reduced heat transport that is suggested by the temperature

contour plot.

Figures 5 and 6 show a clear distinction between the flow at
the shallow and deep ends of the cavity. With little interaction
between the two sections, the result is that the shallow end be-
comes significantly warmer than the deep end as seen in Figure
7 as there is no mechanism for the heat to be transported away.

Figure 8 is the only plot shown with higher Grashof number
Gr = 5.8× 105. This vector plot shows turbulent convection
developing particularly towards the deep end of the cavity. This
is in agreement with [8] where it was shown that turbulent con-
vection at higher Gr develops first near the deep end with stable
convection and conduction remaining near the shallow tip. De-
spite this agreement in terms of transition to turbulence, there
still appears to be much less mixing between the shallow region
and the deeper parts of the cavity.

Conclusions

Reservoir sidearm simulations have been conducted for a three-
dimensional cavity. Some significant differences were seen be-
tween this case and the simple two-dimensional triangle as pre-
sented in the literature. The transition to turbulence was similar,
however differences exist in particular in that the current work
shows much less flow away from the shallow part of the domain.
This means that in a real world situation with similar geometry
to the simulations the mixing between the sidearm and the main
reservoir body would be much less than anticipated from look-
ing at 2D simulations. This is significant, as the mixing would
include not only temperature but also pollutants, nutrients and
micro-organisms.



Figure 7: Temperature contours on a 2D cross section along the cavity centreline, through x = 1
2W . Intervals are 0.1 non-dimensional

temperature units, with the maximum at the top left corner.

Figure 8: Gr = 5.8×105. Vector plot 2D cross section along the cavity centreline, through x = 1
2W . Turbulent convection can be seen

developing toward the deep part of the cavity.
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