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Decay of MHD turbulence at low magnetic Reynolds number
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Abstract

We report a detailed numerical investigation of homogeneous
decaying turbulence in an electrically conducting fluid in the
presence of a uniform constant magnetic field. The asymptotic
limit of low magnetic Reynolds number is assumed. Large-
eddy simulations with the dynamic Smagorinsky model are per-
formed in a computational box sufficiently large to minimise the
effect of periodic boundary conditions. The initial microscale
Reynolds number is about 170 and the magnetic interaction pa-
rameter N varies between 0 and 50. We find that, except for a
short period of time when N=50, the flow evolution is strongly
influenced by nonlinearity and cannot be adequately described
by any of the existing theoretical models [12, 1]. One partic-
ularly noteworthy result is the near equipartition between the
rates of Joule and viscous dissipations of the kinetic energy ob-
served at all values of N during the late stages of the decay.
Further, the velocity components parallel and perpendicular to
the magnetic field decay at different rates, whose value depends
on the strength of the magnetic field and the stage of the decay.

Introduction

A particular case of homogeneous turbulence is characterised
by directional anisotropy. This can be observed in an elec-
trically conductive fluid flowing in the presence of a uniform
external magnetic field B0. Practical examples include crys-
tal growth in semiconductors, molten metals in metallurgy, and
lithium cooling blankets for future fusion reactors. In these and
other circumstances, the magnetic field induced by the elec-
tric currents in the liquid metal is negligible, in comparison
to that imposed externally. The magnetic Reynolds number
being small, the quasi-static approximation [13] can be used
to simplify the expression of the Lorentz force. According
to this approximation, the flow is characterised by two non-
dimensional parameters: the hydrodynamic Reynolds number
Re and the magnetic interaction parameter N (or alternatively
the Hartmann number Ha = (ReN)1/2). N represents the ra-
tio of the Lorentz force to inertia. Hereafter, the combination
of low magnetic Reynolds number, uniform magnetic field, and
quasi-static approximation are always assumed, when referring
to MHD turbulence of liquid metals.

The understanding of decaying MHD turbulence remains in-
complete. The paucity of detailed data on the decay properties
of MHD turbulence is partly due to the anisotropy, which com-
plicates the analytical treatment, and partly to the complexity of
the experiments reproducing such a case. Progress was nonethe-
less made by Moffatt [12], who considered the early stages of
the decay of the velocity fluctuations after sudden application
of a magnetic field of large intensity (i.e. N � 1). His analy-
sis assumed a linear regime and, therefore, was valid only for
a short time after the application of B0, well before nonlinear
interactions arise. Moffatt [12] showed that the magnetic field
introduced an imbalance between the different velocity compo-
nents: the kinetic energy of the velocity parallel to the magnetic

field becomes twice that of the velocities in the perpendicular
directions. He also showed that the Fourier modes of the fluctu-
ating velocity were more effectively damped along the direction
of the magnetic field. The prediction was made that the kinetic
energy would decay according to the power-law t−1/2 for times
t much smaller than one eddy turn-over time. Due to the linear-
ity hypothesis, however, this temporal limitation precluded any
prediction in the so-called ‘initial period’ of the decay.

Alemany et al. [1] carried out an in-depth investigation of MHD
grid turbulence. Their case is the experimental analogue of the
present simulations and therefore is described in some detail
here. The set-up consisted of a biplane grid moving in one
direction inside a column of still mercury. Such arrangement
is equivalent to that in grid turbulence experiments, e.g. [5],
with the difference that, in the latter, the grid is stationary and
the fluid is moved by a fan. The mercury was immersed in
a uniform magnetic field, parallel to the direction of grid mo-
tion. Different values of B0 were tested, with N varying from
0.1 to 1.36. The velocity parallel to B0 was measured at sev-
eral distances x from the grid, ranging from 0 to 19 mesh sizes
M. Alemany et al. [1] found that, following the application
of the magnetic field, the decay exponent m of the power-law
u′2 ∼ x−m (u′ is the velocity fluctuation rms) increased to 1.7,
from m=1 at B0=0. Furthermore, m was almost independent of
N. Remarkably, the effect of B0 on the decay was opposite to
that found by Kolesnikov and Tsinober [9].

Regarding the decay of MHD turbulence at low Rem, there is
presently a gap between theoretical results and available exper-
imental data: the first apply to large values of Rλ (the Reynolds
number based on the Taylor microscale) and N, while the sec-
ond are limited to moderate values of both parameters. Further,
the present linearised theory strictly refers to the early or final
stages of the decay, while empirical data were taken in the initial
decay. Numerical simulations are therefore essential to close
the gap between different regimes and elucidate the behaviour
of decaying MHD turbulence in its entirety. The aim of our
work is to provide a detailed analysis of the decay of MHD tur-
bulence. LES in a box with periodic boundaries are performed.
Using a sufficiently large box, we minimise the effect of the
boundary conditions and achieve a close approximation of ho-
mogeneous turbulence. Flows with moderate values of Rλ and
fairly large values of N are obtained. Among other results, our
study clarifies the apparent contradictions between the exper-
imental observations of Kolesnikov and Tsinober [9] and the
development of the anisotropy as predicted by the linear theory
at large and small scales.

Problem specification

The evolution of incompressible homogeneous MHD turbu-
lence under the effect of a uniform, external magnetic field B0



of intensity B0 and direction x3 is described by Roberts [13]
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Here, u = (u1,u2,u3) is the velocity, p the sum of the kinematic
and magnetic pressure, σ the electrical conductivity, ρ the fluid
density, ν the kinematic viscosity, ∂

−2
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Laplacian operator ∂2
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has zero mean velocity and shear. In (1), the rightmost term
is the Lorentz force expressed via the quasi-static approxima-
tion. The evolution equation of the Reynolds stress tensor is
derived from (1) by multiplication by u j, space averaging, and
symmetrization
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Hereafter, summation is implied over the same index (unless
otherwise stated), the overbar denotes averaging over the homo-
geneous directions, and the explicit time dependence is dropped
most of the times. The three tensors Pi j , ενi j , and εJi j represent
the effect of the pressure-rate-of-strain correlation, viscous dis-
sipation and Joule dissipation. The trace of (3) yields the equa-
tion for the turbulent kinetic energy K = uiui/2, i.e.
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Thus, the temporal decay of K is due to the Joule dissipation
rate εJ and to the viscous dissipation rate εν. The latter can be
equivalently expressed by

εν = 2νsi jsi j =
1
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where si j = 1/2
(
∂ jui +∂iu j

)
is the fluctuating rate-of-strain

tensor.

The importance of the last term in (1) with respect to inertia is
quantified by the magnetic interaction parameter

N =
σB2

0
ρ

L

(2K/3)1/2
, (6)

where L is the integral length scale. As in other works [15, 14, 3,
2], in (6) L is estimated from the isotropic flow, before applying
B0. The interaction parameter can also be expressed as the ratio

N = T/τ (7)

of the eddy turn-over time

T =
L
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(8)

to the magnetic damping time

τ =
ρ

σB2
0
. (9)
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Figure 1: Decay of the turbulent kinetic energy at different val-
ues of the interaction parameter.

In the following, the asterisk indicates normalization of time by
T .

Numerical method

Equations (1)–(2) are solved in a domain with periodic bound-
ary conditions using the LES approach. Details of the method
are given in [7, 4] and only a brief description is provided here.
The nonlinear term is evaluated in physical space while the
other terms in Fourier space; aliasing errors are removed us-
ing the 2/3 algorithm. Time advancement is performed with a
third-order, low-storage, Runge–Kutta integration scheme. The
effect of the small scales on the resolved field is accounted via
the Smagorinsky method using the dynamic procedure as mod-
ified by Lilly [10], in order to determine the volume-averaged
Smagorinsky constant C at each time step. In previous work
[7, 15, 8], it was verified with the help of DNS data that the dy-
namic model accurately describes MHD turbulence. Under the
quasi-static approximation, the Lorentz force is a linear func-
tion of the velocity and therefore commutes with the LES filter-
ing. As a consequence, this approach does not require explicit
modeling of the effect of the magnetic field on the subgrid-scale
term.

Results

Figure 1 reports the decay of K at different values of N. For the
hydrodynamic case, the profile is rather flat until, for t∗& 1, vis-
cous dissipation starts acting as the small scales are populated
through the cascade. Compared to N=0, the primary effect of B0
is to shift the beginning of decay to an earlier time, especially
at the largest values of N. This is due to the Joule dissipation,
which acts immediately at all scales. Despite early differences,
the distributions with B0 6= 0 tend to converge at large times.

The available experiments in the literature reported the decay of
either K‖ or K⊥. Figure 2 shows that, for any given value of N,
the profile of K‖ differs substantially from that of K⊥. The rela-
tive importance of the two components of K varies in time, with
K‖ and K⊥ being the largest contributors of K during respec-
tively the early and late stages. This is illustrated by the inset of
figure 2, which shows K‖/K⊥. The ratio is bounded from above
by the value of 2. Such limit, which corresponds to the pre-
diction of the linear model of [12], is attained only for N = 50,
albeit briefly. It is worth noting that [11], who performed simu-
lations of full MHD turbulence, showed that K⊥ exceeds K‖ at
a late stage of the decay, although only for a compressible flow.

Some parts of the curves in figures 1 and 2 seemingly display a
linear trend. This implies the establishment of a power-law of
the type

K = (t− t0)
−m , (10)
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Figure 2: Decay of the turbulent kinetic energy of the parallel
and perpendicular velocity components. Distributions of K⊥ are
shifted upwards by 20 units. Inset: ratios of the kinetic energy
components.
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Figure 3: Logarithmic derivative of K. IDK06 (m=1.5) is the
value computed by [6]; M67 (horizontal dashed line at m=1/2)
is the value predicted by [12].

where m(> 0) is the decay exponent and t0 the virtual origin.
It should be stressed at the outset that, although such conclu-
sion is supported by earlier experimental evidence ([1, 9]), it is
not derivable analytically for intermediate values of N—that is,
when both viscous and magnetic dissipation rates are not neg-
ligible. As remarked in the introduction, in the limit cases of
N� 1 and N� 1 one can respectively use the linear theory of
[12] with m=1/2 (but only for τ < t < T ) and the data collected
for the pure hydrodynamic case.

The validity of (10) in our numerical experiment is verified di-
rectly by assuming t� t0 and estimating the logarithmic deriva-
tive

m(t) =−dln(K)
dln(t)

=− t
K

dK
dt

. (11)

If K decays according to a power-law over a certain time inter-
val, then the profile of m(t) displays a plateau. This procedure
is more reliable than fitting linearly a curve to the data over an
arbitrary range. Distributions of m computed via (11) are plot-
ted in figure 3. After an early phase, the curve for N=0 levels
off near 1.5. This value is in close agreement with that of [6],
who performed DNS at high-resolution using, like here, an ini-
tial spectrum with a k4 power-law at low wavenumbers. For the
MHD cases, the decay rate is initially larger than in the hydro-
dynamic case. For N=10 and 50 and within one eddy turn-over
time, m displays a first plateau at m ' 0.6, slightly exceeding
1/2 of the linear theory. For lower values of N, the curves tend
to level off only later and at larger values of m. At later stages,
approximately for t∗ & 1 the decay rate decreases with increas-
ing magnetic field.

As observed above, in any single previous experiment either K‖
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Figure 4: Logarithmic derivative of K⊥. Inset: estimate of the
decay exponents in the plateau region as a function of N.
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Figure 5: Logarithmic derivative of K‖ .

or K⊥ was measured. Therefore, it is useful to examine the
decay exponents m‖ and m⊥ of the individual velocity compo-
nents. The results are presented in figures 4 and 5. For N=50,
both sets of curves display the first plateau at m ' 0.6. As N
decreases, the regions of power-law of K‖ disappear, while the
power-law behaviour of K⊥ becomes more evident at later times
(estimates of m⊥ in this regime are plotted in the inset of figure
4). From figures 4 and 5, one noteworthy observation can be
made: at later times the decay rate of K‖ is consistently larger
than that of K⊥. This inequality reconciles the observations
of [1] and [9]. The first experiment provided m‖=1.7 (m=1 at
N=0) for 8 6 x/M 6 20, while the second experiment m⊥=0.23
(m=1.4 at N ' 0) for 2.5 6 x/M 6 40 ([9]’s values have been
estimated from their figures). While these values do not pre-
cisely match those calculated here, and admittedly K‖ does not
follow a power-law decay, our results nevertheless confirm that
K⊥ decays at a significantly slower rate than K‖. This suggests
that the differences between m‖ and m⊥ are intrinsic to this ho-
mogeneous flow, and that wall effects are not essential in order
to explain the discrepancies between the two experiments, see
also [4].

Similarly to the other two terms of the kinetic energy budget
(4), also εJ and more especially εJ⊥ display a power-law (not
shown). Accordingly, at later times the exponent mJ⊥ matches
closely mν⊥ and (m⊥+1). This observation allows some gen-
eral conclusions regarding the kinetic energy budget. At inter-
mediate values of N and large times, all three terms should be
take into account in the kinetic energy budget of the perpendic-
ular component, i.e.

d
dt

K⊥ =−εν⊥− εJ⊥. (12)

The power-law
K⊥ ∼ t−m⊥ (13)
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Figure 6: Ratio of Joule to viscous dissipation: perpendicular
component.

is only possible if

εJ⊥ ∼ t−m⊥−1 (14)
εν⊥ ∼ t−m⊥−1. (15)

The last two relations imply that the ratio εJ⊥/εν⊥ is constant.
This can be verified directly from the numerical data, as illus-
trated by figure 6. For t∗ > 10, the ratios converge towards a
constant value, which, remarkably, is of order 1 for all the cases.
Furthermore, also εJ‖ and εν‖, and consequently εJ and εν (not
shown) display such equilibrium. By recognizing that the ratio
εJ/εν has the form of the square of the Hartmann number Ha,
one concludes that, within the time interval considered but irre-
spective of the value of N, the flow evolves towards a condition
of Ha of order unity. This represents an equipartition of the
dissipations.

Conclusions

The first conclusion of the present work is that the decay fol-
lows a complex path that cannot be fully described by any of
the existing theoretical models. In particular, our simulations
show that the linearised behaviour, which was earlier consid-
ered by [12] and computed by [14], is only followed for a short
time. We find that the nonlinear effects rapidly dominate (after
1 eddy turn-over time) the flow evolution. As a consequence,
the repartition of the kinetic energy between the velocity com-
ponents quickly becomes the opposite of that suggested by the
linear theory.

Regarding the establishment of the initial power-law for the de-
cay of the kinetic energy, our results confirm the validity of
the t−1/2 decay. The data also show that later, in the nonlin-
ear regime, the velocity components in the direction parallel
and perpendicular to the magnetic field decay at different rates.
This reconciles the apparent discrepancies between earlier ex-
periments in grid turbulence.

As an entirely new and rather unexpected result, we observe that
at the late stages of the decay, approximately after 10t∗, the flow
evolves into a state in which the viscous and Joule dissipation
rates are nearly equal and only weakly sensitive to the strength
of the magnetic field. The existence of such a ‘nearly universal’
state with equipartition between the viscous and Joule dissipa-
tion rates may serve as a basis for the development of theories
of MHD turbulence decay.
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