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Abstract 

This paper is focused on the analysis of changes in the flow or 

pressure gradient induced by surface grooves, including the 

effects of shape of the grooves as well as their orientation with 

respect to the flow. The flow has been determined using a novel 

grid-less spectral algorithm based on the Immersed Boundary 

Conditions (IBC) concept, where the boundary conditions are 

submerged inside the computational domain and are treated as 

internal constraints. The results show strong dependence of 

pressure losses on the groove orientation. It is possible to reduce 

such losses, as compared with the smooth channel, by judicious 

selection of groove geometry and orientation. 

Introduction  

Many biological systems contain surfaces exhibiting properties of 

interest in practical applications. Identification of special features 

of these surfaces are the goals of biomimetics [17] and 

understanding how these features are generated  provides 

information base necessary for their mimicking in the 

engineering devices. Use of surface corrugations/roughness is 

wide spread and does not always have origin in biological 

systems. It is known that surface roughness affects the form of 

turbulence [16], it plays a large role in the laminar-turbulent 

transition [7] and it is used as a mixing augmentation technique 

in heat transfer. The following discussion is limited to a provision 

of a few examples of many application areas with focus on the 

fluid dynamic problems. 

Wibel and Ehrhard [26] studied the effects of grooves on the 

laminar-turbulent transition in rectangular micro-channels using 

µPIV technique. Floryan [5] studied centrifugal instability 

induced by grooves in Couette flow and in Poiseuille flow [6]. 

Floryan and Floryan [8] considered travelling wave instability. 

Szumbarski and Floryan [25] studied transient growth. Asai and 

Floryan [1] carried out experimental verifications of theoretical 

predictions dealing with the effects of sinusoidal surface 

corrugation on the critical Reynolds number. Floryan [7] argued 

that the definition of hydraulic smoothness can based on the 

bifurcation point that determines when the flow departs from its 

initial, simple laminar state.   

Longitudinal grooves, commonly referred as riblets, have 

attracted attention due to their drag reducing capabilities in 

turbulent flow regimes. Bechert et al [3] provided detailed 

experimental measurements for grooves of various shapes. 

Frohnapfel et al [9] provided detailed measurements of drag 

reduction associated with rectangular grooves. Bechert and 

Bartenwerfer [2] analyzed lift-up effect induced by the grooves, 

established the virtual origin of velocity profile and provided a 

possible connection between protrusion height and drag 

reduction. Choi et al [4] showed through direct numerical 

simulations of turbulent flow that drag reduction is associated 

with small spacing of riblets that restrict the location of 

streamwise vortices above the wetted surface that limits surface 

area exposed to the high-speed fluid flow. Goldstein et al [11] 

argued that drag reduction is associated with damping of the 

cross-flow velocity components. 

The above brief discussion shows that applications of structured 

surfaces are very wide. These surfaces have complex geometries 

and their modeling represents one of the main challenges in the 

flow analysis. Since surface topology can potentially induce a 

number of instabilities, the geometry has to be modeled with high 

accuracy and flow equations need to be solved with high 

accuracy in order to be able to capture bifurcations points in a 

reliable manner. The classical approach, when one numerically 

constructs geometry models (e.g. grid generation), is very labor 

intensive and this makes systematic analysis of the effects of 

various features of surface geometry impractical. The immersed 

or fictitious boundaries concept offers an effective alternative. 

The basic idea involves the use of a regular computational 

domain for discretization of the field equations while the 

irregular flow domain is submerged inside the computational 

domain. No boundary conditions are imposed at the edges of the 

computational domain but additional relations are added in order 

to satisfy flow conditions at the edges of the flow domain.  The 

field equations are solved simultaneously inside and outside of 

the flow domain and the physical meaning is associated only with 

the part of the solution which overlaps with the flow domain. 

This concept was first proposed by Peskin [22] in the context of 

cardiac dynamics and its various variants have been reviewed in 

[18,23]. The common limitation is the spatial accuracy, as most 

of these methods are based on the low-order finite-difference, 

finite-volume or finite-element technique [10,18,21,22,23]. The 

second, less known limitation is associated with the use of the 

local fictitious forces required to enforce the no-slip and no-

penetration conditions. These forces locally affect the flow 

physics and this may lead to the incorrect estimates of derivatives 

of flow quantities, i.e., misrepresentation of the local wall shear. 

This problem is likely to be more pronounced in the case of 

methods with higher spatial accuracy.  

Spectral methods provide the lowest error for spatial 

discretization of the field equations but are generally limited to 

solution domains with regular geometries. The first spectrally 

accurate implementation of the immersed boundary concept was 

developed by Szumbarski and Floryan [24] and is referred to as 

the Immersed Boundary Conditions (IBC) method in the rest of 

this discussion. This method does not use any fictitious 

boundaries or fictitious forces but relies on a purely formal 

construction of boundary constraints in order to generate the 

required closing relations. The construction of boundary 

constraints relies on the representation of the physical boundaries 

in the spectral space and nullifying the relevant Fourier modes. 

Such implementation is limited to geometries that can be 

represented by Fourier expansions but results in a gridless 

algorithm as all possible variations of boundary geometries are 

described in terms of the Fourier coefficients only. The additional 

attractiveness of this concept is associated with the precise 

mathematical formalism and high accuracy. The method has been 

implemented to study problems involving hydrodynamic 

instabilities induced by surface roughness [5–8,25] and has been 

successfully extended to two-dimensional unsteady problems 

[13] as well as moving boundary problems involving Laplace, 

biharmonic and Navier–Stokes operators [14,12,15] and also 

non-Newtonian fluid problem [20]. 

Problem Formulation 

Consider flow in a channel bounded by two grooved walls 

extending to ±∞  in the x̂ - and ẑ -directions, where the x̂ -axis 

overlaps with the direction of the flow (figure 1). The grooves are 



periodic with wavelengths απλ ˆ/2ˆ =x
 and βπλ ˆ/2ˆ =z

, where  

α̂  and β̂  stand for the wave numbers in the x̂ - and ẑ -

directions, respectively. Shapes of the grooves are specified as  

)ˆ,ˆ(ˆ zxyU
 and )ˆ,ˆ(ˆ zxyL

, where the subscripts U and L refer to the 

upper and lower walls, respectively. The grooves are inclined 

with respect to the flow direction with an angle π/2−φ, i.e., the 

ridges form angle φ with the ẑ -axis (see figure 1).  We shall refer 

to grooves corresponding to φ=0° as the transverse grooves, 

φ=90° as the longitudinal grooves, and φ between 0° and 90° as 

the oblique grooves. The shapes of the grooves can be expressed 

in terms of Fourier expansions in the form 
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complex conjugates, and NA is the number of Fourier modes 

needed to describe groove geometry. It is convenient to introduce 

a different reference system ),ˆ,( zyx  where the x-axis is 

perpendicular and the z-axis is parallel to the grooves’ ridges (see 

figure 1). The new system permits description of geometry of the 

grooves in terms of single Fourier expansions, i.e.,  
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number in the x-direction. Transformation between the )ˆ,ˆ,ˆ( zyx   

and ),ˆ,( zyx  systems has the form 
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Relations between coefficients of expansions (1) and (2) have the 

form 
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and relations between the wave numbers take the form 

                )cos(ˆ φαα = ,         )sin(ˆ φαβ = . (6a,b) 

 

Figure 1. Channel with grooved walls. The )ˆ,ˆ,ˆ( zyx coordinate system is 

flow-oriented and the ),,( zyx system is grooved-oriented. The 

angle φ shows the relative orientation of both systems. 

Flow between smooth walls is taken as the reference flow and the 

direction of this flow defines the reference flow direction. This 

flow is driven by a constant pressure gradient directed in the 

negative x̂ -direction resulting in the velocity and pressure fields 

which in the auxiliary reference system take the form 

      )]sin()ˆ1(,0,)cos()ˆ1([],,[)ˆ( 22

0000 φφ yywvuy −−==V , (7) 

        czxRezxp ++−= − )]sin()cos([2),( 1

0 φφ , (8) 

where 0V  is the reference velocity vector, 0p  is the reference 

pressure and c denotes an arbitrary constant. It is advantageous to 

carry out numerical solution using the ),ˆ,( zyx -system defined 

by equation (3). The total velocity and pressure fields can be 

expressed in this system as 

       )]ˆ,()ˆ(),ˆ,(),ˆ,()ˆ([)( 10110 yxwywyxvyxuyu ++=xV , (9) 
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where subscripts 0 and 1 refer to the reference flow and flow 

modifications due to the presence of the grooves, respectively, hx 

and hz denote modifications of the mean pressure gradient in the 

x- and z-directions, respectively and )ˆ,( yxq  describes the x-

periodic part of the pressure modification. 

The flow in the auxiliary reference system is a function of only 

two coordinates, i.e., )ˆ,( yx , therefore the continuity and Navier–

Stokes equations reduce to the following form 
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where 22222 ˆ// yx ∂∂+∂∂=∇  and yddD ˆ/ˆ = . The reader may 

note that equations (11)–(13) do not contain w1 and thus they 

form an independent system that can be solved separately from 

(14). It can be shown that such separation may be carried out 

only for certain types of flow constraints.  

In order to form a close system of equations one needs to specify 

two arbitrary closing conditions. Four types of 

conditions/constraints are of interest: fixed volume flow rate per 

unit width in the x̂ -direction, fixed volume flow rate per unit 

width in the ẑ -direction, fixed mean pressure gradient in the x̂ -

direction and fixed mean pressure gradient in the ẑ -direction. 

The boundary conditions take the form 
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Only when the volume flow rate constraints are chosen or when 

the pressure gradient constraints are chosen, equations. (11)–(13) 

with boundary conditions (15a,b) and (16a,b) become 

independent of w1 and can be solved separately. Their solution 

describes a two-dimensional motion in the )ˆ,( yx  plane. The flow 

in the z-direction can be determined in the second step of the 

solution process by solving equation (14) with the boundary 

conditions (15c) and (16c). If the flow rate and pressure gradient 

constraints are mixed, the decoupling does not occur and one 

needs to solve equations (11)–(14) as a single system.  

Discretization and Solution Process 

The enforcement of boundary conditions is based on the IBC 

concept which relies on the use of a fixed computational domain 

extending in the ŷ -direction far enough so that it completely 

encloses the grooved channel [24]. The solution is assumed to be 

periodic in the x-direction and thus all unknowns can be 

expressed using Fourier series. Chebyshev polynomials are used 

for discretization in the y-direction. The boundary conditions are 



enforced on the surface of the grooves using the IBC concept 

which their implementation is explained in [24].  

The solution process consists of two steps, i.e., solution of the 

nonlinear problem (equations (11)–(13)) to determine flow in the 

(x,y) plane and the follow up solution of the linear problem 

(equation (14)) to determine flow in the z-direction where the 

details are described in [19].  

Numerical Results 

Presence of transverse grooves increases flow resistance and 

reduces the volume flow rate for a fixed pressure gradient (and 

equal to the reference flow pressure gradient). The volume flow 

rate changes as a function of the grooves’ orientation. As the 

grooves rotate away from the transverse position and become 

more aligned with the direction of the imposed pressure gradient 

( x̂ -direction), the flow resistance decreases leading to an 

increase in the volume flow rate. Results shown in figure 2 

demonstrate that the maximum flow rate (minimum resistance) in 

the direction of pressure gradient ( x̂ -direction) corresponds to 

the grooves assuming longitudinal orientation (φ=90°). As the 

grooves rotate away from this position, they force a net flow in 

the spanwise direction ( ẑ -direction). The maximum of this flow 

occurs for φ ≈42° depending on the groove wave number and 

amplitude, and decreases to zero as the grooves approach the 

transverse orientation (φ=0°). Grooves with higher wave 

numbers and higher amplitudes are more effective in creating 

spanwise flow. Similarly, effectiveness of these grooves 

increases with an increase of the Reynolds number Re.  It is 

interesting to observe that in the case of longitudinal grooves 

(φ=90°), u0=0, v1=0, u1=0, ∇2w1=0 and the flow modifications are 

unidirectional and independent of the Reynolds number. 
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Figure 2. Variations of the volume flow rate per unit width 
x

Q ˆ  in the 

reference flow direction ( x̂ -direction, solid lines) and of the volume flow 

rate zQˆ  in the orthogonal direction ( ẑ -direction, dash lines) as a 

function of the groove inclination angle φ. Figure 2A– Re=1000, α=3 and 

typical values of the groove amplitude S. Figure 2B – α=3, S=0.03 and 

typical values of the flow Reynolds number Re. 

Similar calculations have been carried out for the case of fixed 

flow rates constraints (flow rate was assumed to be equal to that 

given by the reference flow). Variations of the additional 

pressure gradients required to maintain such flow rates are 

plotted in figure 3 as a function of the grooves’ orientation angle 

φ. Presence of the transverse grooves (φ=0°) results in an 

increase of the flow resistance and therefore an additional 

pressure gradient needs to be added to maintain the same flow 

rate. As the grooves rotate away from the transverse position and 

become more aligned with the direction of the reference flow 

( x̂ -direction), the flow resistance decreases. The minimum 

resistance and thus the minimum additional pressure gradient 

corresponds to the grooves assuming longitudinal orientation 

(φ=90°). Presence of oblique grooves creates tendency for the 

flow to follow direction of the grooves. Spanwise pressure 

gradient must be added in order to prevent net flow in the 

spanwise direction. This situation would occur in a channel with 

a finite spanwise width as the side walls would prevent any net 

flow in the spanwise direction. The side walls would be exposed 

to pressure forces associated with the spanwise pressure gradient 

required to eliminate the spanwise flow. The maximum spanwise 

pressure gradient occurs for φ ≈42° depending on the groove 

wave number and amplitude, and decreases to zero as the grooves 

approach either the transverse and or the longitudinal 

orientations. Grooves with higher wave numbers α and higher 

amplitudes S require higher additional pressure gradients in order 

to maintain the same flow rates. Increase of the flow Reynolds 

number Re increases the pressure correction factors 
x

hRe ˆ×  and 

zhRe ˆ× . In the case of longitudinal grooves (φ=90°), 
x

hRe ˆ×  

becomes independent of the flow Reynolds number Re. 
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Figure 3. Variations of the pressure correction factors 
x

hRe ˆ×  (solid 

lines) and 
z

hRe ˆ×  (dash lines) as functions of the groove inclination 

angle φ. Figure. 3A– Re=1000, α=3 and typical values of the groove 

amplitude S. Figure. 3B – α=3, S=0.03 and typical values of the flow 

Reynolds number Re.  

Conclusions 

A spectral algorithm suitable for analysis of flows in channels 

with grooved walls has been presented. The grooves are two-

dimensional but may have arbitrary orientation with respect to 

the reference flow direction. This direction is defined as the flow 

direction when grooves are absent. In the case of transverse 

grooves the flow is two-dimensional; the flow becomes three-

dimensional for oblique grooves and remains three-dimensional 

when grooves assume longitudinal orientation. The algorithm 

models geometry of the grooves using Fourier expansions. 



Computations are carried out in a fixed computational domain 

with the grooves submerged inside this domain. The flow 

boundary conditions are enforced using the immersed boundary 

conditions (IBC) method which results in the construction of 

constraints that provide closing conditions for the field equations. 

The algorithm eliminates the need for costly coordinate 

generation and provides flexibility required for an efficient 

analysis of various possible grooves’ geometries.  

Presence of transverse grooves increases flow resistance and 

reduces the volume flow rate for a fixed pressure gradient. The 

volume flow rate changes as a function of the grooves’ 

orientation. The maximum flow rate (minimum resistance) in the 

direction of pressure gradient ( x̂ -direction) corresponds to the 

grooves assuming longitudinal orientation (φ=90°). Grooves with 

higher wave numbers and higher amplitudes are more effective in 

creating spanwise flow. The maximum of this spanwise flow 

occurs for φ ≈42°. Similarly for the case of fixed flow rates 

constraints, presence of the transverse grooves (φ=0°) results in 

an increase of the flow resistance and therefore an additional 

pressure gradient needs to be added to maintain the same flow 

rate. The minimum resistance and thus the minimum additional 

pressure gradient corresponds to the grooves assuming 

longitudinal orientation (φ=90°). 

The novel algorithm developed as a part of this study permits 

efficient optimization of grooves’ shape and orientation that leads 

to either maximization or minimization of pressure drop 

associated with the flow.  
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