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Abstract 

We have devised a new simple lattice Boltzmann model which 
can simulate supersonic flows. This model is based on the free-
molecular-type kinetic equation whose calculation system was 
constructed by Sone in 2002. Various numerical simulations are 
carried out to confirm that this model can compute supersonic 
flows and show that numerical results agree with the 
corresponding solutions of the compressible Navier-Stokes and 
Euler equations. 

Introduction  

The lattice Boltzmann method (LBM) [1-5] is often used recently 
to obtain numerical solutions of the fluid-dynamic-type equations. 
The LBM solves the kinetic equation with a finite number of 
molecular velocities such that the macroscopic variables obtained 
from the solution satisfy the desired fluid-dynamic-type 
equations. The merits of this kinetic-equation approach are the 
simple basic equation, the linear derivative terms, high resolution 
for capturing small oscillations like sound waves or 
discontinuities like shock waves. 

The LBM for the compressible NS equations was first devised 
by Alexander et al. [3]. Their model includes the nonlinear 
deviation terms that are proportional to the third-order flow 
velocity. Later, Chen et al. [4] and Kataoka et al. [5] individually 
proposed the models without these nonlinear deviation terms. 
However, an important defect still remains, that is, the supersonic 
flow cannot be computed stably. When the flow speed exceeds 
the sound speed, numerical results based on the LBM are 
subjected to meaningless oscillations and diverge. Thus, 
computation of compressible flows using the LBM is very 
limited. In order to utilize the above-mentioned merits of the 
kinetic equation approach, especially high resolution for 
capturing discontinuities like shock waves, it is strongly desired 
that someone develops a kinetic scheme which can simulate 
supersonic flows stably. 

In this study, therefore, we develop a new kinetic scheme 
which can simulate supersonic flows. The original idea is based 
on Sone [6]. He devised a simple way to construct a kinetic 
system of equation in such a way that some moments of the 
solution of the kinetic system satisfy the desired equations 
exactly. On the basis of this kinetic system, he discussed a much 
simpler numerical scheme which uses the free-molecular kinetic 
equation, but instead modifies the velocity distribution function 
completely to a certain equilibrium one at each time step. This 
modification makes this scheme free of errors proportional to 
Mach numbers inherent in the existing LBM. The error estimate 
of this scheme was also explained, and it was mentioned that the 
molecular velocity is not necessarily continuous. 

In the present study therefore we make use of the above free-
molecular kinetic system to construct the lattice Boltzmann 
model having a finite number of molecular velocities. The 

number and position of molecular velocities are dependent on the 
fluid-dynamic-type equations we want to solve, which are the 
compressible NS equations here. They are looked for under the 
constraint that some moments of velocity distribution function 
satisfy the prescribed relations (see (3a-c) and (7a,b) below). We 
then succeed in obtaining such model specifically and 
computation indicates that this new scheme can simulate 
supersonic flows stably. 

Basic Equations (NS) 

First, we write down the compressible NS equations (which 
include the compressible Euler equations) whose solution we 
want to get: 
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where t  is the time, αx  is the spatial coordinate, R  is the 
specific gas constant, D  is the number of dimensions, and b  
is a given constant related to the specific-heat ratio γ  by 

                      
b

b 2+
=γ .     (2) 

ρ , αu , T , αβP , and αΠ  are, respectively, the density, the 

flow velocity in the αx  direction, the temperature, the stress 
tensor, and the energy flux in the αx  direction of a gas. Three 
transport coefficients: ),( Tρμ  (the viscosity), ),( TB ρμ  (the 
bulk viscosity), and ),( Tρλ  (the thermal conductivity), are 
functions of ρ  and T . The Euler equations are obtained by 
putting 0=== λμμ B . We use the subscripts α , β , and χ  
to represent the number of spatial coordinates and the summation 
convention is applied to these subscripts. 



 

 

Lattice Boltzmann Model 

New lattice Boltzmann model for the compressible NS equations 
(1) is as follows. Let icα ( D,,1L=α , Ii 3,,1,0 L= ) be the 

molecular velocities in the αx  direction and ),( αxtfi  
( D,,1L=α , Ii 3,,1,0 L= ) be the velocity distribution function 
of the i th particle. The total number of discrete molecular 
velocities is 13 +I . The macroscopic variables ρ , αu , and T  
are defined as 
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Figure 1. Distribution of the unit vector iqα  ( D,,1L=α ; 

Ii ,,0 L= ): (a) one-dimensional model ( 1=D , 2=I ); (b) two-
dimensional model ( 2=D , 6=I ); (c) three-dimensional model 
( 3=D , 12=I ). 

where 0v , 1v , 2v , and 3v  are given positive constants, and 

iqα  ( Ii ,,1L= ) is the unit vector defined by (see figure 1) 
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Consider the initial-value problem of the free-molecular-type 
kinetic equation: 

                   0=
∂
∂

+
∂
∂

β
β x

fc
t
f i

i
i ,       (5) 

in a continuous sequence of time intervals ],( 10 tt , ],( 21 tt , …. 
under the following initial condition for each interval ],( 1+mm tt : 
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where )(mρ , )(muα , and )(mT  are ρ , αu , and T  calculated 

from the solution if  at mtt =  of (5) in the preceding interval 

],( 1 mm tt − , and Ini
if  is defined as 
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Here the molecular velocities icα  given by (4) and the 

distribution function ),,(Ini Tufi αρ  represented by (6) are 
determined under the constraint that they satisfy (3a-c) with if  

being replaced by ),,(Ini Tufi αρ  and the following relations: 
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Then the macroscopic variables ρ , αu , and T  obtained from 
the solution if  at an arbitrary time satisfy the compressible NS 
equations, or Eqs.(1) within the error of ( ))max( 1 mm ttO −+  
which can be made sufficiently small irrespective of flow 



 

 

parameters (see Sone [6] for this derivation). In the next section, 
we will give numerical examples to show that the proposed 
scheme can compute supersonic flows stably. 

Numerical Examples 

In this section we present various numerical examples. We solve 
the kinetic equation (5) by the following finite-difference 
scheme: 
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where )(mif  represents if  at mtt = , and αxf mi ∂∂ /)(  is 

evaluated by the usual upwind finite-difference formula of third-
order accuracy (so called UTOPIA). 

  We first treat the expansion-wave problem whose initial 
macroscopic variables are given by 

         0ρρ = ,  )/tanh( 11 LxUu = ,  0TT = ,  (9) 
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Figure 2. Numerical results 01 / RTu γ  and 0/TT  at 10ˆ =t  for the 

expansion-wave problem whose initial conditions are (9) with 3/5=γ  
and three different values of =Ma 2, 3, and 4 ( 0=== λμμ B ). The 
symbols (○, =Ma 2; △, =Ma 3; □, =Ma 4) are the results by 
the proposed lattice Boltzmann scheme (3)-(6) with 1=D  and mesh 
interval 5.0/1 =Δ Lx , and the lines are the corresponding results of the 
Euler equations solved by the MacCormack method with the sufficient 
number of meshes. From the symmetry of the problem with respect to 

01 =x , only the results for 01 >x  are shown. 
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Figure 3. Temperature fields 0/TT  at 10ˆ =t  for the expansion-wave 
problem whose initial conditions are (9) with 3/5=γ , 3Ma = , 

10Pr = , and three different values of =Re 100, 500, and ∞  ( μ  and 
λ  are constants). The symbols (○ , =Re 100; △ , =Re 500; □ , 

∞=Re ) are the results by the proposed lattice Boltzmann scheme (3)-
(6) with 1=D  and mesh interval 5.0/1 =Δ Lx , and the lines are the 
corresponding results of the NS equations solved by the MacCormack 
method with the sufficient number of meshes. 

where 0ρ , U , L , and 0T  are given positive constants. 
When 0=== λμμ B , this problem is characterized by the 
specific-heat ratio γ  defined by (2) and the Mach number 

0/Ma RTU γ= . Numerical results at 10/ˆ
0 =≡ LRTtt  for 

3/5=γ  and three different values of =Ma 2, 3, and 4 are 
shown in figure 2. The symbols represent results by the proposed 
lattice Boltzmann scheme (3)-(6) with 1=D  while the solid 
lines are the corresponding numerical results of the Euler 
equations solved by the so-called MacCormack scheme [7] with 
the sufficient number of meshes. We find a good agreement 
between the two results. Note that the existing lattice Boltzmann 
models can make calculation only for the Mach number smaller 
than unity. 

Next, we consider the same problem when 0≠μ  and 0≠λ . 
The problem is characterized by the specific-heat ratio γ , the 
Mach number Ma, the Reynolds number Re, and the Prandtl 
number Pr defined by 
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as well as the functional forms of ),( Tρμ  and ),( Tρλ . 

Temperature fields at 10ˆ =t  for 3/5=γ , 3Ma = , 10Pr = , 
and three different values of =Re 100, 500, and ∞  with μ  
and λ  being constants ( Bμ  can be incorporated into μ  for 

1=D ) are shown in figure 3. The symbols represent results by 
the proposed scheme (3)-(6) with 1=D  while the solid lines 
are the corresponding numerical results of the NS equations 
themselves (1) solved by the MacCormack scheme [7]. We find a 
good agreement between the two results for each case, or Re=100 
and 500 (results for ∞→Re  are shown for the sake of 
comparison). 
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Figure 4. Numerical results 0/TT  and 01 / RTu γ  for the shock-tube 

problem whose initial conditions are (11) with 5/7=γ  and three 
different values of =01 / ρρ 10, 30, and 50 ( 0=== λμμ B ). The solid 

lines are the results by the proposed lattice Boltzmann scheme (3)-(6) 
with 1=D  and mesh interval 01.0/ 01 =Δ RTtx , and the dotted lines 

are the corresponding theoretical solutions. 

 

Figure 5. Isobaric lines of a supersonic flow (Mach number 4) past an 
array of wedges of half-angle 15° with after body. Results are obtained by 
the proposed lattice Boltzmann scheme (3)-(6) with 2=D . Only a half 
region between two neighbouring wedges is shown due to symmetry of 
the flow field. The flow velocity on the boundary of wedges is given such 
that its normal component vanishes. 

Thirdly, we consider the shock-tube problem in which the 
shock waves and contact discontinuities appear. The initial 
macroscopic variables are given by 
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where 0ρ , 1ρ , and 0T  are given positive constants. Here we 
treat the case of 0=== λμμ B , so that the problem is 
characterized by γ  and 01 / ρρ . Numerical results for 

5/7=γ  and three different values of =01 / ρρ 10, 30, and 50 
are shown in figure 4 by the symbols. The exact theoretical 
solutions are shown by the dotted lines. We find a good 
agreement between the two results for each value of 01 / ρρ . 
Numerical data near the shock waves and contact discontinuities 
deviate from the exact solution, but it is natural because we did 
not use a special complicated scheme like TVD. We can say that 
the proposed scheme captures the discontinuities relatively well 
considering that no special fitting method is used. 

  Finally, a supersonic flow past an array of wedges after body is 
simulated. This flow is mainly characterized by the Mach number 
and the half-angle of each wedge. Figure 5 shows numerical 
result for Mach number 4 and the half-angle 15° obtained by the 
proposed kinetic system (3)-(6) with 2=D . Only a half region 
between two neighbouring wedges is shown due to symmetry of 
the flow field. We can see that the shock wave is clearly 
produced by the vertex of each wedge and crosses each other in 
the middle of two neighbouring wedges.  

Conclusions 

We have developed a new simple lattice Boltzmann scheme for 
the compressible NS and Euler equations which can simulate 
supersonic flows. 
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