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Abstract

Some simple modifications to the stretched-vortex model are
proposed. The first of these eliminates the need for calculating
estimates of the resolved second-order structure function, which
can be complicated on distorted or irregular grids. The second
modification improves estimates of subgrid-scale spectra and
associated integral quantities by equating the energy dissipation
calculated from the model spectrum with the energy transfer
from resolved to subgrid scales.

Introduction

Turbulent flows are characterised by irregular unsteady three-
dimensional fluid motion over a wide range of spatial and tem-
poral scales. Prediction of many turbulent flows by direct nu-
merical simulation remains impracticable due to the enormous
computational resources needed to resolve all relevant scales.
This problem is mitigated in a large-eddy simulation (LES)
because only the large-scale features of the flow are resolved,
while the fine-scale subgrid features are modelled.

The stretched-vortex model [9, 13, 11, 4, 2, 3] is one of many
models intended for large-eddy simulations. One of the capabil-
ities of this model is the systematic prediction of subgrid-scale
guantities, including the subgrid-scale spectra and associated
integral quantities such as the subgrid-scale variance [4, 2].

Recently, it has been found that the original procedures de-
veloped for computing subgrid-continued spectra produce re-
sults that are grid-dependent [3]. The problem is illustrated
in Figure 1, which shows one-dimensional energy spectra from
large-eddy simulations of a turbulent temporal shear-layer cal-
culated by the present author using procedures developed by
Hill et al. [4] (hereafter referred to as the original model). The
figure shows both resolved spectra and modelled subgrid ex-
tensions from simulations with different effective resolutions.
The spectra are scaled in terms of Kolmogorov variables and
should collapse at high wave-number but it is clear that the high
wave-number subgrid extensions are resolution dependent. Us-
ing simple scaling arguments, it can be shown that the original

model implies
A\ L3
n (ﬁ) ’

where, is the predicted viscous length-scalk,is the grid
spacingn = (v3/g)1/4 is the Kolmogorov length-scale amds
the energy dissipation rate.

M 1)

Although this problem has very little effect on the resolved-
scale flow, it may be important if subgrid quantities are of direct
interest, as is the case in combustion problems or scalar mixing,
for example. Furthermore, plotting spectra with subgrid exten-
sions is a useful way of verifying that the model implementation
is working as intended.

The principal aim of this paper is to modify the original model
of Hill etal. [4]in order to eliminate grid resolution effects. The
paper begins by recapping the original model, which is identi-
cal to that used by Hilkt al. [4] except for the subgrid-vortex
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Figure 1: Resolved-scale (black) and subgrid-continued (grey)
one-dimensional energy spectra for four different grid resolu-
tions: A/n = 16 (solid line), 64 (long-dash line), 503 (dot-dash
line) and 2082 (dotted line).

alignment model which follows that of Kosovét al. [5]. This

is the model that was used to produce the spectra in Figure 1.
Two modifications to this model are described, both of which
make use of expressions for the local energy dissipation rate.
The first modification is introduced as a convenient alternative
to structure-function matching and appears to work just as well.
The second modification involves matching the dissipation cal-
culated from the model spectrum with the transfer of energy
from resolved to subgrid scales. Although Chung & Pullin [3]
have already devised a procedure to eliminate grid-resolution
effects, the method developed here is slightly different. It is
shown that the present modification leads to a model estimate
of the viscous length-scale, that scales with the Kolmogorov
length-scale as required. This is verified by plotting spectra
from large-eddy simulations of a temporal shear-layer at dif-
ferent effective resolutions.

Original model

The governing equations for large-eddy simulation of an incom-
pressible flow are

9u; _
an o
_ _0p/p 0T OTj

0X; 0xj TXJ

0, (2a)

9
ot

Ju;u;
0Xj

; (2b)

wherex; andy; are the components of the Eulerian position and
velocity vectors, respectivelpis the pressura;j is the viscous
stress tensor given by
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andv is the kinematic viscosity. In the derivation of the govern-

ing equations, overbars denote the filtering operation
T:/G(x—x’)f(x’)dx’, @)

whereG is a filter kernel. Itis assumed that the filtered variables

correspond to the resolved-scale quantities obtained in an actual
LES. The additional term,

Tij = wuy —Uiuj,

®)
is the subgrid stress.

The stretched-vortex subgrid stress model of Misra & Pullin [9]
is used to close equation (2b). The subgrid stress is
Tij = K(3ij —&'ef) (6)

whereK is the subgrid kinetic energy per unit mass, afd

are the components of a unit vector which is aligned with the
subgrid vortex axis.The subgrid kinetic energy is

K :/ E(K) dk, )
ke

wherek is the wave-number; = 11/A is the cut-off wave-
numberE (k) is the spectrum of the Lundgren spiral vortex,

®

%o is the Kolmogorov prefactor is the local cell-averaged
dissipation rate)2 = 2v/(3|a)), a= &'efS; is the axial strain
along the subgrid vortex axis [13] arg} is the resolved rate-

of-strain tensor. The groupge?/3 is calculated from the lo-
cal resolved spherically-averaged second-order velocity struc-
ture functionF» using

E(k) _ ?(bi’:Z/?:k75/3677\\2,k27
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whereA =4 gu=5/3 (1 SIU) du~ 190695 [8, 13, 11]. The
resolved-scale structure function is estimated at the poirst
ing
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wheredt;® = Tj(x+ €jA) —Ti(x) ande; is the unit vector in the
j-th direction [4]. Subgrid vortices are assumed to align either
with the principal extensional eigenvector of the resolved rate-

of-strain tensorS,-, or the resolved vorticity vectorp. The
respective proportions are given hyand(1— M), where

A3
=— 11
Mot [l -
andAs is the principal extensional eigenvalue [5].

Modifications

An alternative method for calculating the groa@ez/ 3 can be

derived from the local energy balance [9],
€=2VS|S; +&sgs

wheree is the dissipation rate arsgsis the subgrid dissipation
rate. These quantities are related to the energy spedlin

by

(12)

s:ZV/O KE(K)dk and esgszzv/kc RE(K)dk, (13)

c1 = 0.303251428576845(
C2 = 0.413826430202538(
c3 =0.431402073311688%

¢4 = 0.4519713785569434
¢5 = 0.4660579752458206
Cs = 0.4736114577011807

Table 1: Coefficients of the six-term asymptotic expansion (19).

in which case ‘
S8 = [ E(Rde

The integral in equation (14) is evaluated by assuming that
E(k) = %pe%/3k /3, in which case

(14)
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The form of the spectrum used in the above calculation is con-
sistent with the model spectrum (8), provided tkalies within

the inertial range, but it is not strictly applicable at resolved
wave-numbersk < ke. On the other hand, the integral is dom-
inated by the form of the spectrum for wave-numbers close to
ke, where the model spectrum is likely to be satisfactory. A
similar issue arises in the derivation of equation (9). Vaetkl

al. [13] argue that a more detailed description of the energy
spectrum is not necessary because only the integral enters into
the model. A potential advantage of equation (15) over equa-
tion (9) is that it is unnecessary to calculate the resolved-scale
structure-function (10), which may be complicated on irregular
or distorted computational grids. Only existing computational
infrastructure (i.e. calculating derivatives) is needed.

An alternative method for calculating the rate-of-strain parame-
tera can be derived by assuming that
€sgs= —S§jTij. (16)
The guantity—S;Tij is more correctly interpreted as the trans-
fer of kinetic energy from resolved to subgrid scales. However,
this quantity is often used as a surrogate for the subgrid dis-
sipation. Substituting equation (6) into the right-hand-side of
equation (16) yieldgsgs= Ka, wherea = q"e‘j’éj. Note that
ais the resolved axial strain along the subgrid vortex axis and
is the same aa in the original model. Using the model spec-
trum (8) to evaluate the second integral in (13) and substituting
the result into (16) yields

ReaXT(—=1/3,X)—-T(2/3,X) =0, ann
whereX = k2\Z,
a a

andrl (n,x) is the incomplete Gamma function. The rate-of-
strain a is determined by calculatinRea using the resolved
rate-of-straina, solving equation (17) foX and finally using
(18) to finda.

In practice, an asymptotic solution of equation (17) is used in
order to avoid unnecessary evaluations of the Gamma function.
The asymptotic solution is

6 _lme
X ~ Ref/2 z cmReA2<m Y asRep — o, (29)
m=1

where the coefficientsy, are listed in Table 1. The asymptotic



4 T T T T T T T
3 -
|
© oL
1 -

' | ' | ' | '

0 5 10 15 20
Re,

Figure 2: Asymptotic and direct numerical solutions of equa-
tion (17) (circles and solid line, respectively).

and direct numerical solutions of equation (17) are plotted to-
gether in Figure 2. FoRepy > 4.3011, the error in the asymp-
totic solution is less than two percent. It is unnecessary to calcu-
late X for Rey < 4.3011 because the external strain rate is then
considered fully resolved, in which caae- a.

The above algorithm completely resolves the grid dependence
problem described earlier. Using the leading-order term in the
asymptotic expansion and noting that the resolved rate-of-strain
scales as ~ £1/3A~2/3 yields

=\ —3/2
(2 ~n2
(2) e

The above algorithm works whesags = ijTij > 0. This is
true when the subgrid vortices are aligned with the principal
extensional eigenvector. However, when the subgrid vortices
are aligned with the resolved vorticity it is possible s <

0. In that case, it is impossible to find a solution because the
integral foresgsis positive. Several adhoc choices can be made.
In the present simulations, the problem is avoided by ughg

in place ofa, as in equation (8).

A= (20)

K

as required.

The modification introduced by Chung & Pullin [3] is quite sim-
ilar, but they make the additional assumption that

e \1/2
2= (1)
which corresponds to isotropic flow, and essentially solve equa-
tion (16) without evaluating integrals of the form (13).

(1)

Results

The modified model is used to simulate turbulent temporal
shear-layer flow in a rectangular prism. Cartesian coordinates
(x,y,2) are oriented in the streamwise, cross-stream and span-
wise directions, respectively, with corresponding components
of velocity (u,v,w). Periodic boundary conditions are imposed

in the homogeneous streamwise and spanwise directions. The
top and bottom of the domain are modelled as free-slip walls. A
Fourier spectral collocation scheme is used in the homogeneous
x andz directions. An eighth—order compact finite—difference
scheme [7] is used in the inhomogenegudirection. The grid
spacing4, is identical in each direction. All the simulations are
run on the same 12864 grid. The effective resolution/n is
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Figure 3: Resolved-scale (black) and subgrid-continued (grey)
one-dimensional energy spectra for four different grid resolu-
tions: A/n = 25 (solid line), 259 (long-dash line) and 8264 (dot-
dash line). Circles correspond to the empirical spectrum given
by Pope [10]

controlled by changing the viscosity. Aliasing is minimised by

calculating the nonlinear convective terms in skew—symmetric
form [1]. A third—order variable—time—step Adams—Bashforth—
Moulton scheme is used for temporal integration. The code
was validated by computing solutions of the incompressible un-
steady Stuart vortex (with the subgrid-scale model turned off
and with suitably modified boundary conditions) [12].

The initial mean velocity profile is

[y] 1 y
au — ()
whereAU is the velocity difference across the layer ahis

set to approximately .6A (this is the thinnest resolvable on
the grid). This is perturbed by a random, three-dimensional,
divergence-free disturbance.

(22)

One-dimensional energy spectra from simulations at three dif-
ferent effective resolutions are plotted in Figure 3. The spec-
tra are defined such thgf E;j (k) dkx = (ui’2> [10], where the
angled brackets denote a plane average lgnis the wave-
number in the longitudinat direction. Both the resolved-scale
and subgrid-scale extensions are shown. Model estimates of
the subgrid contributions to the resolved-scale spectrum have
been included. The plane-averaged dissipation (gtewhich

is used to scale the spectra, is calculated from equation (12).
Also included on this figure is the model spectrum developed
by Pope [10], which is a good fit to a wide variety of spectral
data.

The collapse of the spectra in Figure 3 indicates that the pre-
dicted subgrid extensions are independent of the effective res-
olution. There is excellent agreement between the simulation
spectra and the empirical model in the inertial range. However,
the subgrid extensions tend to overshoot the model spectrum
near the viscous cut-off. This can be more clearly seen by plot-
ting the compensated spectrum in log-linear coordinates, as is
done in Figure 4. The simulations appear to produce spectra
with an exponential cut-off of the form ekppkn) as origi-
nally proposed by Kraichnan [6], but the value [is closer

to 2 rather than the value of 5.2 that is commonly observed in
experiments and simulations Pope [10].

Figure 5 shows spectra from three simulations which use differ-
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Figure 4: Resolved-scale (black) and subgrid-continued (grey) Figure 5: Resolved-scale (black) and subgrid-continued (grey)
one-dimensional compensated energy spectra for four different one-dimensional energy spectra for Simulations A (solid line),
B (long-dash line) and C (dot-dash line). The effective resolu-
tion in each of these simulationsAgn = 8264.

grid resolutions:A/n = 25 (solid line), 259 (long-dash line)
and 8264 (dot-dash line). Lines with circles correspond to the
empirical spectrum given by Pope [10]

ent elements of the modified and original model:

Simulation A is run using the mixed alignment model and
equation (15) to estimatépe?/3.

Simulation B is run using the mixed alignment model and
equation (9) to estimatege?/3.

Simulation C is run using a single vortex aligned with the
principal extensional eigenvector and equation (15) to es-
timate %pe2/3.

These simulations are otherwise identical. The spectra from
Simulations A and B are almost indiscernible, which indicates
that equation (15) is at least as good as the original method of
estimating%pe?/2 using structure functions. Close inspection
of the resolved-scale spectrum from Simulation C suggests that

(2]

(3]

[4]

[5]

[6]

the largest resolved wave-numbers are somewhat more damped [7]

when the single-vortex alignment model is used instead of the
mixed alignment model.

Conclusion

The model modifications presented in this paper produce es-
timates of the subgrid spectrum that are independent of the
effective grid resolution. The modified model forces the en-
ergy transfer from resolved to subgrid scale&(Tij) to be the
same as the estimate of the subgrid dissipation obtained by in-
tegrating the model spectrum, at least when the former quantity
is positive. If a single-vortex alignment model is used, then
—Sj'l'ij > 0 and the two estimates of the subgrid dissipation
are identical, but this comes at the expense of some additional
damping at the largest resolved wave-numbers.
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