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Abstract 

Direct Numerical Simulation is used to model the discharge of a 
periodically perturbed jet of fluid into a pipe that is five times the 
diameter of the jet. A planar flapping perturbation at the jet inlet, 
when used on its own or when combined with an axisymmetric 
perturbation, leads to a bifurcation of the jet some distance 
downstream. The present observations help resolve a previous 
discrepancy between experimental and numerical results 
concerning the presence of this bifurcation phenomenon. Across 
all periods of perturbation, the bifurcation is strongest, and occurs 
closer to the jet inlet, when the flapping perturbation is used 
exclusively. For both single mode and bimodal perturbation, 
bifurcation is observed across Strouhal numbers (the ratio of the 
product of the inlet diameter and axial perturbation frequency to 
the inlet bulk speed) in the range 0.33–1. This is an expansion of 
the previously reported range for which this phenomenon has 
been observed. 

Introduction  

The discharge of a jet from a wall into a body of quiescent fluid 
arises in many applications, ranging from the exhausts of jet 
engines to many manufacturing processes involving the mixing 
or reaction of fluids. In these flows, the nature of the mixing 
between the injected and quiescent fluid is important.  

Past studies (detailed in [8]) have revealed that the addition of 
periodic perturbations to the initial jet velocity profile can lead to 
interesting downstream flow patterns and enhanced fluid mixing. 
When an axisymmetric periodic perturbation is applied to the jet 
efflux velocity, vortex rings form in the jet shear layer. With the 
addition of a planar “flapping” perturbation, these vortex rings 
can be made to tilt away from the plane of the jet nozzle. Tilted 
vortex rings will naturally propagate along their axis, and thus 
away from the central axis. 

If the flapping perturbation causes successive vortex rings to tilt 
in different directions, then their mutual interaction can amplify 
the tilting. By controlling the frequencies of the axial and 
flapping perturbations, it has been observed experimentally [8] 
that jets can be made to branch into two, three or four streams, or 
bloom out in all directions. It has been observed both 
experimentally [8] and via direct numerical simulation [5] that 
such flow structures can greatly enhance mixing between the jet 
efflux and surrounding fluid.  

This investigation considers a perturbed inlet jet profile of the 
form 
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where, in a cylindrical coordinate system (z,r,θ) with origin at the 
centre of the jet, U(r) is a steady parabolic axial velocity profile 
through an inlet of diameter D. Here A and f give the amplitude 
and frequency of the perturbations, and the subscripts 0 and 1 
denote the axial and flapping perturbations respectively. φ is a 
constant that specifies the phase difference between the two 

perturbations. This jet inflow is of the same form used in [4] and 
[5].  

For a spatially and temporally averaged inlet bulk speed Um, we 
may characterise the flow using at least five dimensionless 
parameters: the Reynolds number Re = UmD/ν, the Strouhal 
number of the axial disturbance Sta = f0D/Um, the ratio of 
axisymmetric and flapping perturbation frequencies β = f0/f1, and 
the ratios A0 and A1 of the amplitudes of the axial and azimuthal 
disturbances to that of the base flow. For bimodal perturbations, 
we only consider the case where β = 2, meaning that successive 
axial pulses correspond to flapping pulses in opposing directions. 
This leads to successive vortex rings being tilted in opposite 
directions, potentially leading to the bifurcation of the jet stream. 
Bifurcation can be defined to have occurred when the streamwise 
velocity splits into two separate peaks as one moves downstream 
from the jet inlet. 

The present study focuses on low Reynolds number (200) and 
high amplitude perturbations (A1 = 0.5, A0 = 0 or 0.5 depending 
on whether or not axisymmetric perturbations are used), with no 
phase difference between the two perturbation modes (i.e. φ = 0). 

Domain and Numerical Method 

The simulations use spectral element discretisation in the 
meridional semiplane and Fourier discretisation in the azimuthal 
direction to solve the incompressible Navier–Stokes equations. A 
cylindrical domain of diameter 5D and axial length 25D is used. 
Each of eight meridional semiplanes consists of 650 spectral 
elements, whose geometry is shown in figure 1. Tensor-products 
of eighth-order Gauss-Lobatto-Legendre Lagrange shape 
functions are used within each element. Temporal integration 
uses a second order backwards time differencing velocity 
correction scheme. More details of the numerical method is given 
in [1]. 

No-slip boundary conditions are implemented at the wall from 
which the jet enters, and across the circumferential boundary of 
the domain. This represents a different approach to that taken in 
[4] and [5], where fluid is allowed to advect across the sidewalls 
of the domain. This distinction is potentially important, as a jet 
efflux entering into ambient fluid naturally entrains flow from the 
far field (for example [9]). The domain described could more 
closely represent the finite diameter domains present in the 
applications of flows of this nature. It can be noted that 
axisymmetric pipe expansions have been studied in numerous 
other contexts, such as [3]. Convective boundary conditions [7] 
are used at the far end boundary, with a bulk outflow convection 
speed of 0.6Um. This allows (potentially) recirculating fluid to 
advect across the domain boundary. 

 
Figure 1: Geometry of the 650-element mesh in each meridional 
semiplane. Units are relative to D. 



Axisymmetric Pulsatile Flow  

When A1 = 0, the inlet velocity profile is axisymmetric. For a 
non-zero A0, a vortex ring is produced for each velocity 
maximum of the perturbed inlet velocity. This is shown in figure 
2 for A0 = 0.5 and Sta = 0.5, with the behaviour similar for other 
perturbation frequencies within the range 0.33 ≤ Sta ≤ 1. Due to 
the relatively low Reynolds number, the vorticity dissipates well 
before the far end of the domain. This scenario can be used as a 
basis for comparison for the nonaxisymmetric simulations. The 
effects of the presence of the far end boundary have been 
included to give scale to the domain, and to demonstrate that they 
do not affect the region of interest. 

 
Figure 2: Isosurfaces of the vortex core measure of Jeong and Hussain [5] 
for an axisymmetric pulsatile just with Sta = 0.5 and A0 = 0.5. 

Bimodal Perturbation 

If a flapping perturbation is added to the axisymmetric 
perturbation to the inlet jet, vortex rings continue to form for 
each maximum of the axisymmetric perturbation (figure 3). The 
initial tilt of each vortex ring is not particularly noticeable, 
however as each vortex ring travels downstream, its interaction 
with neighbouring vortex rings amplifies this tilt and ultimately 
leads to its breakdown. For all dimensionless pulse periods, the 
remnants of the individual vortex rings become indiscernible 
approximately 13 jet diameters downstream of the inlet.  
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Figure 3: Isosurfaces of the vortex core measure for bimodal perturbation 
(A0=A1=0.5) and Sta = (a) 1, (b) 0.67, (c) 0.5, (d) 0.4 and (e) 0.33. View is 
of the plane of flapping. 

The bifurcation of the jet can be quantified by considering time-
averaged contours of axial velocity, as shown in figure 4. We 
observe that the jet typically breaks off into two distinct streams 
within the plane of “flapping”, with the streams separating at 
approximately the same axial location as where the vortices break 
down. This bifurcation is strongest for smaller Strouhal numbers, 
in the sense that, within cross-sections normal to the inflow, there 
is typically a larger difference between the peak streamwise 
velocity and that at the central axis. This could be due to larger 
spatial separation between vortex rings allowing for greater 
uninhibited vortex propagation away from the central axis. It is 
noted here, but will be discussed later, that bifurcation is not 
apparent for a dimensionless perturbation frequency of 0.67. 
These observations of bifurcation are in general agreement with 

experimental observations documented in [8], but run counter to 
the lack of bifurcation for bimodal perturbation observed in the 
numerical studies of [4]. There are at least four factors (aside 
from the different side boundary conditions) that could feasibly 
account for this difference. To begin with, the present study uses 
larger perturbation amplitudes (0.5 compared to 0.15) and a 
different phase difference between the modes of perturbation (φ 
= 0 rather than π/4) to [4]. Additionally, the simulations in [4] 
were at Sta = 0.55, which our results indicate could be within a 
region in parameter space of weak bifurcation. Finally, [4] used a 
domain of length 15D, a length after which bifurcation was only 
beginning to become apparent in our simulations. 
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Figure 4: Time-averaged isosurfaces of axial velocity 0.4Um for bimodal 
perturbation (A0=A1=0.5) and Sta = (a) 1, (b) 0.67, (c) 0.5, (d) 0.4 and (e) 
0.33. View is of the plane of flapping. 

Flapping-only Perturbation 

The characteristics of jet flow with bimodal perturbation can be 
compared to those where only the flapping perturbation is applied 
(i.e. A0 = 0). Although the axisymmetric perturbation mode is not 
present, for consistency we will continue to parameterise the 
frequency of perturbation by Sta (with β =2). For flapping-only 
perturbation, the vortex core measure isosurfaces in figure 5 do 
not show clear evidence of distinct vortex rings being formed, but 
rather alternating trails of vorticity corresponding to each half-
period of flapping. This periodicity becomes indiscernible closer 
to the jet inlet than in the bimodal case, suggesting that mixing 
occurs more effectively with only this single perturbation mode. 
A further point of difference with the bimodal case is that there 
appears to be a distinguishable dependence between the 
perturbation period and the axial location where this breakdown 
occurs (increasing from about 6D for Sta = 1 to 8.5D for Sta = 
0.33). This is potentially a result of smaller pulse periods 
inherently allowing for more comprehensive interaction between 
fluid from successive pulses.  

Figure 6 shows that the bifurcation is more pronounced, and 
occurs closer to the inlet, for flapping-only perturbation across all 
Strouhal numbers. The increase in the level of bifurcation is also 
evidenced by figure 5, where the vortex core measure isosurfaces 
appear to split and change shape at approximately the location of 
bifurcation. Unlike figure 5, however, figure 6 does not display 
any clear correlation between the pulse period and the nature of 
bifurcation. 

It appears that entraining fluid in distinct vortex rings hinders 
bifurcation, which, in this set of simulations, does not occur until 



the vortex rings break down. The presence of bifurcation using 
flapping-only perturbation is in agreement with [4]. 
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Figure 5: As for figure 3, but with for flapping-only perturbation (A0=0). 
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Figure 6: As for figure 4, but with for flapping-only perturbation (A0=0). 

Discussion 

We now return to discuss in more detail the apparent abnormality 
seen in figure 3(b), where no bifurcation is observed for dual-
mode perturbation at Sta = 0.67. It is possible that here the vortex 
rings are too close to each other to allow for them to propagate 
radially outwards after tilting. This is approximately consistent 
with the experimental findings, which document a maximum Sta 
(at Re between 2800 and 10 000) for bifurcation of 0.7. The fact 
that we observe bifurcation at Sta = 1 now needs to be 
rationalised. It could be possible that here successive vortex rings 
are so close to each other that they are never allowed to 
propagate independently, and instead almost immediately decay 
into alternating trails of vorticity. In this sense, the bifurcating 
mechanism here might be closer to what is observed for the 
flapping-only perturbations. Indeed, looking at the vortex core 
isosurfaces at the location of bifurcation, it seems as though the 
characteristics of figure 3(a) more closely resemble those in 
figure 5 than in 3(b)-(e). Irrespective of the mechanism, it has 
been found that bifurcation can exist at higher pulse frequencies 
than previously observed. We can also note that the bifurcation at 

the lowest Strouhal number tested is approximately at the limit of 
the lowest pulse frequency for which bifurcation has been 
documented. Alternating vortex tilting, as seen in figure 3, has 
been observed as an instability mode in the context of pulsatile 
stenotic flows [2], with a least stable Strouhal number of 0.31. 
This perhaps indicates that bifurcation could occur at even lower 
frequencies than those tested.  

Conclusions 

Jet bifurcation was observed for both dual-mode (axisymmetric 
and flapping) and flapping only inlet perturbations for Strouhal 
numbers between 0.33 and 1 (relating to a real or imagined 
axisymmetric perturbation frequency that is always twice the 
flapping frequency). The only conditions where bifurcation was 
not clearly evident was for bimodal perturbation at a Strouhal 
number of 0.67. This pulsation period is close to the 
experimentally determined lower limit for this phenomenon. The 
presence of bifurcation at the even higher Strouhal number of 1 
has not been previously documented, and is possibly a result of a 
bifurcation mechanism different to the vortex tilting observed 
experimentally. 

Flapping only perturbation was found to both accelerate the onset 
and increase the extent of bifurcation. This is likely to be due to a 
differing bifurcation mechanism, which bypasses the formation 
of and interaction between distinct vortices. Apart from limiting 
the extent to which spreading could occur, the presence of side 
walls does not seem to have qualitatively affected the bifurcation 
phenomenon, which is relevant to potential applications of such 
flows. Further work could test the effects of altering the radial 
size of the domain, over an extended range of the governing 
dimensionless parameters.  
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