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Adumbrate in a century of determined scientific investigation is
the significance of pipe-flow research. The transition to turbu-
lence of fluid flows though these rigid, circular geometries is of
interest in many and often diverse branches of science and engi-
neering. Despite this context, very little is know of the mecha-
nisms and instabilities responsible for moving the system away
from the laminar basin.

It is known that laminar Hagen–Poiseuille flow is linearly sta-
ble to general perturbations at finite Reynolds numbers, andthat
single-harmonic periodic flow is stable to axisymmetric per-
turbations. However, the stability of non-axisymmetric time-
periodic flows is yet to be tested by conventional numerical
means. We extend the analysis to demonstrate that the pure
oscillatory flow is also stable to general perturbations. Weex-
plain how this implies that all laminar steady and periodic cir-
cular pipe flows of this type are linearly stable. The least stable
modes identified are axially invariant. The results of the sta-
bility study are discussed in comparison to Direct Numerical
Simulation (DNS).

Introduction

As is well known, steady laminar flow in a circular tube
(Hagen–Poiseuille flow) is linearly stable to general infintesi-
mal disturbances for all Reynolds numbers yet studied (e.g.(4))
but is observed to become turbulent at bulk flow Reynolds num-
bers of orderRe= UD/ν = 2000–3000 in moderately careful
experiments; whereU is the bulk flow speed,D is the pipe di-
ameter andν the kinematic viscosity. Under careful experimen-
tal conditions this transition point can be delayed well beyond
these values. There is still debate about the precise mechanism
that leads to transition.

Here we are concerned with the stability and transitional mecha-
nisms of time-periodic flows though pipes, which may be either
oscillatory (zero time-average bulk flow) or pulsatile (non-zero
time average bulk flow). Oscillatory and pulsatile incompress-
ible flows in a straight rigid circular tube are canonical phe-
nomena of classical fluid mechanics. In addition they serve as
models of a variety of flows of engineering and physiological
application, for example peristaltic pumping and arterialflows.
For these cases it is useful to define the peak bulk-flow-speed
(ūp) as:

ūp = max
0<t≤T

ū(t) , (1)

where T is the period, and ¯u the area-average or bulk-flow-
speed:

ū(t) =
8

D2

∫ D/2

0
u(r, t) rdr. (2)

Previous work by (8) on axisymmetric perturbations of single-
harmonic oscillatory flows found such regimes linearly stable.
The case for general perturbations is a subset of our extension
to the literature. Experiments in these flows (e.g. (3)) showthat
transition to turbulence can occur, often in the form of bursts
during each oscillation. In the case of pulsatile pipe flow (when
an oscillation is superimposed on a steady mean flow), experi-
ments, e.g. by (6), also demonstrate the presence of burst-type

transition. However in this case, there is presently no published
study of linear stability, a deficiency that our present workaims
to remedy.

The laminar base-flows for these problems are obtained from
the analytical solution of the Navier–Stokes equations (5)in
cylindrical coordinates. For a prescribed bulk-area-average flow
rate (2) – assumedT-periodic – the corresponding radial ve-
locity profile conforms to the Fourier–Bessel function derived
by (5) and is couched here in terms of the Womersley number
(Wo):
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Here,n is a frequency harmonic,J0 is a complex Bessel function
andKn is an associated complex axial pressure gradient. In the
limit asT grows without bound, this analytical solution asymp-
totes to the standard parabolic Hagen–Poiseuille solution. It is
important to note thatWo=

√
2 ·R/δ = R·

√

ω/ν is the Wom-
erley number – a non-dimensional frequency parameter, based
on ω; the oscillatory frequency. Associated is theδ =

√

2ν/ω
length scale, known as the Stokes layer thickness over a flat-
plate in oscillatory flow. This is used to scale wall-units, de-
noted by+ (x+ = xδ/ν).

Without loss of generality we can ignor the pressure gradient
Kn as a parameter and adjust the phases and amplitudes of the
solutions to (3) such that at each temporal harmonicn, we have

ū(t) =∑
n
[An ·cos(nω · t/T)+Bn ·sin(nω · t/T)] . (4)

The n = 0 case corresponds to the standard Hagen–Poiseuille

solution u(r) = A0

[

1− (r/R)2
]

, and as stated above, is also

a solution to (3). In this – the steady flow case – the only
parameter is the Reynolds number,Re. Alternatively, for
the time-periodic cases the flows have two dimensionless
parameters that describe the pulse period and some measure of
the flow speed. Taking ¯up as a velocity scale and diameterD as
a length scale, the time scale isD/ūp. This leads to a choice
of the two dimensionless parameters; a Reynolds number and
reduced velocity, respectivly:

Re =
ūpD

ν
and Ured =

ūpT

D
.

The mean flow velocity scale can again appear though the re-
duced velocity. This pairing is a sensible choice for the oscil-
latory cases in that the Womersley number appears in the ana-
lytical solution for the base flows. We note that the oscillatory
components of the base flow have (via eq. 3) velocity profiles
that are only a function ofWo, r/R, andt. The reduced velocity
is then a premultiplying kinematic factor that describes how far
the bulk flow oscillates along the pipe, expressed in pipe diame-
ters, but does not alter the velocity profile. For oscillatory flows
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Figure 1: Base flows of ¯u(r, t) for period pointst/T = 0→ 1.
As Wo> 1 the base-flow becomes more plug-like.

we nonetheless would expecta priori that their stability could
be a function of the two dimensionless flow parameters,Woand
reduced-velocity, as well as axial (α) and azimuthal wavenum-
bers (k).

Since all the flows have the same boundary conditions, we can
consider their linear stabilty on a term–by–term bases, oneterm
for each termporal Fourier harmonic. Again exploiting linearity,
we can deal with general spatial perturbations at each temporal
period as a linear sum of axial and azimuthal Fourier modes,
with wave numbersα = 2πD/Lx andk respecitively. One im-
plication is that we do not here need to examine the linear stabi-
ilty of the steady flow, since that has been comprehensivly dealt
wtih in previous works — it suffices to examine the stability
of the oscillatory components, and these can be delt with one
temporal harmonic at a time.

To orientate the reader, we present in Figure 1 the radial profiles
of axial velocity for ten phase-points in the base flow cycle.
These profiles correspond to the modulation of bulk flow speed
in t/T (top of Fig. 1). With increasingWo, the velocity profile
becomes more like plug flow but with small overshoots near the
pipe wall.

Methodology

Stability Analysis

The stability analysis problem is solved in primitive variables.
Starting from the incompressible Navier–Stokes equations,

∂tu=−u·∇u−∇p+ν∇2u, ∇ ·u= 0, (5)

where p is the kenematic or modified pressure. It is prorpsed
thatu=U +u′ whereU is the base flow whos stability is exam-
ined andu′ is an infinitesimal perturbation. Upon substitution
and retaining terms linear inu′, the linearized Navier–Stokes

equations are obtained:

∂u′ =−u′ ·∇U −U ·∇u′−∇p′+ν∇2u′. (6)

We note that in the present problem, the base flow isT-periodic,
i.e. U (t +T) = U (t). Because in incompressible flows the
pressure is not an independant variable, and all terms are linear
in u′, we can write this evolution equation in symbolic form,

∂tu
′ = L

(

u′
)

, (7)

whereL is a linear operator withT-periodic coefficients through
the influence of the base flow. Correspondingly the stabilityof
this equation is a linear temporal Floquet problem. Writingthe
state evolution ofu′ over one period as

u′ (t +T) = A(T)u′ (t) , (8)

whereA(T) is the system monomodry matrix, we obtain a Flo-
quet eigenproblem:

A(T)u′′j (t) = µju
′′
j (t) . (9)

Hereu′′j (t) are phase-specific Floquet modes andµj are Floquet
multipliers (which generally occur in complex-conjugatepairs).
Stability of the problem is assessed from the Floquet multipli-
ers: unstable modes have multipliers that lie outside the unit
circle in the complex plane (i.e.|µ|> 1), while stable modes lie
inside (i.e.|µ|< 1).

We use a time-stepping based methodology outlined in (7) and
given detailed explanation in (1) in order to solve the Floquet
eigenproblem. A key point about the approach is that a system
monodromy matrixA(T) is not explicitly constructed; rather,
a Krylov method is used that is based on repeated application
of the state transition operator (7) whos action is obtainedby
integrating the linearised Navier–Stokes equations forward in
time over intervalT. By varying the Krylov dimension and
ensuring sufficient resolution we are typically able to resolve a
moderate number (e.g. ten) of the leading (least stable) Floquet
modes.

Numerical methods

Spatial discretization and time integration is handled using a
cylindrical coordinate spectral element method with mixedex-
plicit/implicit time stepping, as outlined in (2). The domain
is discretized into spectral elements in the meridional semi-
plane that runs from the pipe axis to the outer radius in the
radial direction and a finite length of pipeLz in the axial di-
rection. For all cases investigated the meany+ was 0.3626 with
a σ = 0.1970.

Fourier modal stucture is assumed in the azimuthal direction
with integer wavenumbersk, and as a result of linearization,
each azimuthal mode can be dealt with independently. In the
axial direction we use real wavenumbersα = 2/Lz. Because
of the approach taken to spatial discretization in the axialdirec-
tion, the Floquet eigensolution for an domain length can contain
modes for bothα = 0 (i.e. modes that are axially invariant) and
α = m2/Lz (wherem is an integer). Typically, there are a num-
ber of multipliers forα = 0 that are larger in magnitude than the
first axially varianet mode and we compute sufficient modes to
be assured that we obtain the leading mode forα = 2πD/Lz as
well.
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Figure 2: Floquet multiplier data derived from (8) (YY in
graph), for the dominant axially invariant axisymmetric modes.
Compilation of comparable results obtained from present com-
putations shown as a solid line (α = 0, k= 0).

The same spatial and temporal structure is implemented for the
flow direct numerical simualtion (DNS). However the azimuthal
resolution in Fourier space was compressed tok = 0→ 32 (64
planes). Global body forcing to modulate the oscillatory terms
of (4) between ¯up = ±1 was based on the laminar solution to
(3).

Results

We first examine stability to axisymmetric perturbations (k=0),
as dealt with previuosly by (8), who found that axially invariant
modes (α = 0) were the least stable. We have re-interpreted
their dimensionless groups asWoandUred and presented their
results, along with ours, forα = 0, k = 0 as shown in Figure 2.
In all cases, the flow is stable (µ< 1), but only marginally so at
largeWo.

Our data compares well with those from (8) (the slight discrep-
ancies seen are attributable noise in our digitization of their fig-
ures). Of note is the collapse of three figures from (8) onto a
single curve for our choice of dimensionless groups. We note
that this collapse is not seen in their data for non-axially in-
variant modes, i.e.α > 0. Our results, to be discussed below,
also show that forα > 0, there are (as expecteda priori) again
two dimesionless groups. This anticipation stems from theUred
parameter pertaining only to Floquet modes having axial struc-
ture. Axially invariant modes are then dependent only on the
Wocontrol.

The stability of general perturbations (k > 0) was investigated
for a series ofWo at varying levels of three-dimensionality.
These were compared to the axisymmetric case (k = 0) for the
axial wavenumberα = 0. In Figure 3 only the dominant (least
stable) Floquet multiplier (µ) is presented for each case.

The axialy invariant case is of particular interest as it allows
the multiple curves associated with theUred kinetic parameter
to be condensed, and the results interpreted soly on the basis
of the Womerley number. From Figure 4 we can summize that
α = 0 is the leading branch for thek= 0 leading mode. Hence,
confirming the results of (8). The behavior of sub-dominant
modes – presented in Figure 5 – confirms the Floquet stability
of the system.

Encapsulated in 4 by linear superposition are all periodic pipe
flow profiles. By noting the linearity of the Floquet decomposi-
tion, and that of the boundary conditions, the system as a whole
is assessed for stability from its constituent harmonics – all of
which are linearly stable to infantesimal perturbations. Hence,
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Figure 3: Dominant Floquet mulitpliers for axially invariant
(α = 0) modes. These were calculated for a range ofWo and
azimuthal wave numbers (k).
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Figure 4: Floquet mulipliers for thek= 0 case overα ≥ 0.
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Figure 5: The leading three (a,b,c) Floquet multipliers forfor
k= 0, α = 0



Figure 6: Modal energies (Ek) for a history of dimensionalt
(Wo= 66,Ured = 6.83). Initially all modes decrease monaton-
ically from k= 0 in Ek. The first mode to recieve amplification
is k= 1, which then picks-upk= 2, and so on infinitem leading
to complete transition.

all time-periodic flows though pipes are linearly stable.

Direct Numerical Simulation

The relative influence of thek = 0 wave number was investi-
gated by direct numerical simulation of both oscillatory and pul-
satile pressure-driven flows. Base flows of type (3) were pertur-
bated with∑Ek=0→31 = 10−4, whereEk is the energy in mode
k as per the standard:

Ek =
1

2A

∫
Ω

u∗
k ·uk r dΩ, (10)

hereΩ is the meshed spectral-element plane (of whichA is the
area) andu is the velocity field withu∗ the complex-conjugate.
For brevity we present only a single case.

The growth of modes in the periodic flow is dominated by, and
coupled to the axisymmetric mode. Subsequent modes experi-
ence self-similar fluctuations tok = 1. Modesk = 1→ 4 expe-
rience significant growth, not predicted by the linear theory.

The peaking of the modal energy is followed by a sink towards
a laminar recovery position. For the transitional period (t =
4 → 6) this means a return to a laminar profile from turbulent
patches; Figure 7. For highWo there is very little phase-lag
between the recovery of the near-wall regions and that of the
centre-line. Perturbations near the wall have been found (3) to
be several orders of magnitude smaller when compared to the
centre-line. Such phase-locked disturbances are characteristic
of periodic flows.

Conclusion

The present study extends (and confirms) the work of (8) to gen-
eral perturbations. We have found the least-stable Floquetmode
to be axisymmetric and axially invariant. Additionally, byuse
of the Womerley number parameter – and noting the lineariar-
ity of both the operator and boundary conditions – we have de-
termined that all time-periodic pipe flows are vanishingly sta-
ble. This result, coupled with the known stability of Hagen–
Poiseuille flow, renders the comlpete family of pipe-flows lin-
early stable.

-0.02

-0.015

-0.01

-0.005

 0

 0.005

 0.01

 0.015

 3  4  5  6  7  8  9
-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

v v

t

r/R = 0.98
r/R = 0.00

Figure 7: Fluid velocity in the radial (v) direction over thetran-
sitional time; taken at two locations in the pipe – near the wall
(r/R= 0.98), and at the pipe centre-line (r/R= 0). At Wo= 66
there is very little phase-lag forr/R= 0.98→ 0. Phase-locked
turbulent patches are a signature of transitional periodicflows.

Further work in DNS for time-periodic pipe flow has shown
that the azimuthal wave modes are highly coupled. The largest,
by energy, isk = 0. We also demonstrate the active role that
k = 1→ 4 take in the transitional stages of flow. Further work
in transient growth is required to support a by-pass transition
conclusion.
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