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Adumbrate in a century of determined scientific investigats
the significance of pipe-flow research. The transition tbuur
lence of fluid flows though these rigid, circular geometrgesfi
interest in many and often diverse branches of science agid en
neering. Despite this context, very little is know of the ime&c
nisms and instabilities responsible for moving the systesya
from the laminar basin.

It is known that laminar Hagen—Poiseuille flow is linearlg-st
ble to general perturbations at finite Reynolds numbersttzatd
single-harmonic periodic flow is stable to axisymmetric-per
turbations. However, the stability of non-axisymmetricé-
periodic flows is yet to be tested by conventional numerical
means. We extend the analysis to demonstrate that the pure
oscillatory flow is also stable to general perturbations. ae
plain how this implies that all laminar steady and periodre ¢
cular pipe flows of this type are linearly stable. The leaaibkt
modes identified are axially invariant. The results of the st
bility study are discussed in comparison to Direct Numérica
Simulation (DNS).

Introduction

As is well known, steady laminar flow in a circular tube
(Hagen—Poiseuille flow) is linearly stable to general irgf@it
mal disturbances for all Reynolds numbers yet studied (€)y.

but is observed to become turbulent at bulk flow Reynolds num-
bers of ordeRe= UD/v = 2000-3000 in moderately careful
experiments; wherd is the bulk flow speed) is the pipe di-
ameter and the kinematic viscosity. Under careful experimen-
tal conditions this transition point can be delayed welldrey
these values. There is still debate about the precise mischan
that leads to transition.

Here we are concerned with the stability and transitionailrae
nisms of time-periodic flows though pipes, which may be &ithe
oscillatory (zero time-average bulk flow) or pulsatile (reero

time average bulk flow). Oscillatory and pulsatile incongsre
ible flows in a straight rigid circular tube are canonical phe
nomena of classical fluid mechanics. In addition they sesve a
models of a variety of flows of engineering and physiological
application, for example peristaltic pumping and arteft@ks.

For these cases it is useful to define the peak bulk-flow-speed

(Up) as:
)

whereT is the period, andi the area-average or bulk-flow-
speed:

Up= max u(t
P~ oct<T ®,
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Previous work by (8) on axisymmetric perturbations of séagl
harmonic oscillatory flows found such regimes linearly Eab
The case for general perturbations is a subset of our ertensi
to the literature. Experiments in these flows (e.g. (3)) st
transition to turbulence can occur, often in the form of bars
during each oscillation. In the case of pulsatile pipe floléw

an oscillation is superimposed on a steady mean flow), experi
ments, e.g. by (6), also demonstrate the presence of lyest-t

u(t u(r,t) rdr. 2

transition. However in this case, there is presently noiphbtl
study of linear stability, a deficiency that our present wairks
to remedy.

The laminar base-flows for these problems are obtained from
the analytical solution of the Navier—Stokes equationsit(5)
cylindrical coordinates. For a prescribed bulk-area-agerflow

rate (2) — assumedi-periodic — the corresponding radial ve-
locity profile conforms to the Fourier—Bessel function ded

by (5) and is couched here in terms of the Womersley number

Wo:
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Here,nis a frequency harmonidy is a complex Bessel function
andKp is an associated complex axial pressure gradient. In the
limit as T grows without bound, this analytical solution asymp-
totes to the standard parabolic Hagen—Poiseuille solutias
important to note thatvo= v/2-R/8 = R- \/w/V is the Wom-
erley number — a non-dimensional frequency parameterdbase
on w; the oscillatory frequency. Associated is the- \/2v/w
length scale, known as the Stokes layer thickness over a flat-
plate in oscillatory flow. This is used to scale wall-unitg- d
noted byt (x© = x3/v).

Without loss of generality we can ignor the pressure gradien
Kn as a parameter and adjust the phases and amplitudes of the
solutions to (3) such that at each temporal harmaonige have

u(t) = Z [An-cos(nw-t/T)+ By -sin(nw-t/T)].

n

(4)

The n = 0 case corresponds to the standard Hagen—Poiseuille
solutionu(r) = Ag [1, (r/R)Z], and as stated above, is also

a solution to (3). In this — the steady flow case — the only
parameter is the Reynolds numbde Alternatively, for
the time-periodic cases the flows have two dimensionless
parameters that describe the pulse period and some medsure o
the flow speed. Takingy as a velocity scale and diame®@as
a length scale, the time scaleyup. This leads to a choice
of the two dimensionless parameters; a Reynolds number and
reduced velocity, respectivly:

Re = Q

v

UpT
and Upgg= .

The mean flow velocity scale can again appear though the re-
duced velocity. This pairing is a sensible choice for thdlesc
latory cases in that the Womersley number appears in the ana-
Iytical solution for the base flows. We note that the osaliat
components of the base flow have (via eq. 3) velocity profiles
that are only a function aq, r /R, andt. The reduced velocity

is then a premultiplying kinematic factor that describes ffiar

the bulk flow oscillates along the pipe, expressed in pipmdia
ters, but does not alter the velocity profile. For oscillatibows
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Figure 1: Base flows dii(T,t) for period pointst/T =0 — 1.
AsWo> 1 the base-flow becomes more plug-like.

we nonetheless would expegtpriori that their stability could
be a function of the two dimensionless flow parametfsand
reduced-velocity, as well as axiat)and azimuthal wavenum-
bers K).

Since all the flows have the same boundary conditions, we can
consider their linear stabilty on a term—by—term basesjeme

for each termporal Fourier harmonic. Again exploiting &rigy,

we can deal with general spatial perturbations at each teahpo
period as a linear sum of axial and azimuthal Fourier modes,
with wave numberst = 2nD/Ly andk respecitively. One im-
plication is that we do not here need to examine the lineai-sta
ilty of the steady flow, since that has been comprehensivéjtde
wtih in previous works — it suffices to examine the stability
of the oscillatory components, and these can be delt with one
temporal harmonic at a time.

To orientate the reader, we present in Figure 1 the radiéilggo

of axial velocity for ten phase-points in the base flow cycle.
These profiles correspond to the modulation of bulk flow speed
int/T (top of Fig. 1). With increasingVa the velocity profile
becomes more like plug flow but with small overshoots near the
pipe wall.

Methodology

Stability Analysis

The stability analysis problem is solved in primitive vélies.
Starting from the incompressible Navier—Stokes equations

du=—u-Ou—DOp+vD?u, O-u=0, (5)

where p is the kenematic or modified pressure. It is prorpsed
thatu= U + U whereU is the base flow whos stability is exam-
ined andyu' is an infinitesimal perturbation. Upon substitution
and retaining terms linear it/, the linearized Navier—Stokes

equations are obtained:

U =—u.-0U-U-0Ov —0p +vO?u. (6)
We note that in the present problem, the base flolvfperiodic,
i.e. U(t+T)=U(t). Because in incompressible flows the
pressure is not an independant variable, and all termsrazarli
in U, we can write this evolution equation in symbolic form,

o' =L (U), )
whereL is a linear operator witfi-periodic coefficients through
the influence of the base flow. Correspondingly the stabifity
this equation is a linear temporal Floquet problem. Writing
state evolution off over one period as

Ut+T)=A(M)U (1), (8)
whereA(T) is the system monomodry matrix, we obtain a Flo-
quet eigenproblem:

A(T)U] (1) = pyuj (1). 9)
Hereu? (t) are phase-specific Floquet modes apére Floquet
multipfiers (which generally occur in complex-conjugadep).
Stability of the problem is assessed from the Floquet nliltip
ers: unstable modes have multipliers that lie outside the un
circle in the complex plane (i.¢y > 1), while stable modes lie
inside (i.e.|y < 1).

We use a time-stepping based methodology outlined in (7) and
given detailed explanation in (1) in order to solve the Fltqu
eigenproblem. A key point about the approach is that a system
monodromy matrixA(T) is not explicitly constructed; rather,

a Krylov method is used that is based on repeated application
of the state transition operator (7) whos action is obtaimgd
integrating the linearised Navier—Stokes equations faoivia
time over intervalT. By varying the Krylov dimension and
ensuring sufficient resolution we are typically able to tes@
moderate number (e.g. ten) of the leading (least stablgjuek
modes.

Numerical methods

Spatial discretization and time integration is handlechgisa
cylindrical coordinate spectral element method with mirse
plicit/implicit time stepping, as outlined in (2). The doma

is discretized into spectral elements in the meridionalisem
plane that runs from the pipe axis to the outer radius in the
radial direction and a finite length of pige in the axial di-
rection. For all cases investigated the mgéawas 03626 with

ao =0.1970.

Fourier modal stucture is assumed in the azimuthal directio
with integer wavenumberk, and as a result of linearization,
each azimuthal mode can be dealt with independently. In the
axial direction we use real wavenumbers= 2/L,. Because

of the approach taken to spatial discretization in the airaic-
tion, the Floguet eigensolution for an domain length cartaon
modes for bothl = 0 (i.e. modes that are axially invariant) and
o =m2/L; (wheremis an integer). Typically, there are a num-
ber of multipliers fora = 0 that are larger in magnitude than the
first axially varianet mode and we compute sufficient modes to
be assured that we obtain the leading modeofer 2rD /L, as
well.
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Figure 2: Floguet multiplier data derived from (8) (YY in
graph), for the dominant axially invariant axisymmetricaes.
Compilation of comparable results obtained from present-co

putations shown as a solid ling & 0, k = 0). Figure 3: Dominant Floquet mulitpliers for axially invania

(a = 0) modes. These were calculated for a rangg/ofand
azimuthal wave numberg)

The same spatial and temporal structure is implementedhéor t
flow direct numerical simualtion (DNS). However the azimaith
resolution in Fourier space was compressek 00 — 32 (64
planes). Global body forcing to modulate the oscillatomyrts
of (4) betweerup = +1 was based on the laminar solution to

3.

1 T
Results
We first examine stability to axisymmetric perturbatioks-0), 08 |
as dealt with previuosly by (8), who found that axially irizaut 06 L i
modes ¢ = 0) were the least stable. We have re-interpreted - 1
their dimensionless groups W0 andU,.q and presented their 04 L i
results, along with ours, fax = 0, k = 0 as shown in Figure 2. 1 i
In all cases, the flow is stabl@ & 1), but only marginally so at oL a=000 ]
largeWa N o=8.00

a=160 ———-
Our data compares well with those from (8) (the slight digere 0 5 s ‘;0 — slo — 1'20 60

ancies seen are attributable noise in our digitization eif tfg-
ures). Of note is the collapse of three figures from (8) onto a
single curve for our choice of dimensionless groups. We note
that this collapse is not seen in their data for non-axially i
variant modes, i.ea > 0. Our results, to be discussed below,
also show that foo > 0, there are (as expectedoriori) again

two dimesionless groups. This anticipation stems fromuhg
parameter pertaining only to Floquet modes having axiaktstr
ture. Axially invariant modes are then dependent only on the
Wocontrol.

Figure 4: Floquet mulipliers for the= 0 case oveo > 0.

The stability of general perturbationk £ 0) was investigated
for a series ofWo at varying levels of three-dimensionality.
These were compared to the axisymmetric cése Q) for the
axial wavenumbea = 0. In Figure 3 only the dominant (least
stable) Floquet multipliery) is presented for each case.

The axialy invariant case is of particular interest as ibwa

the multiple curves associated with tbgy kinetic parameter

to be condensed, and the results interpreted soly on the basi
of the Womerley number. From Figure 4 we can summize that
a = O is the leading branch for the= 0 leading mode. Hence,
confirming the results of (8). The behavior of sub-dominant
modes — presented in Figure 5 — confirms the Floquet stability
of the system.

120 160

Encapsulated in 4 by linear superposition are all periogie p . . .

flow profiles. By noting the linearity of the Floguet decomipos ~ Figure 5: The leading three (a,b,c) Floquet multipliers ffor
tion, and that of the boundary conditions, the system as dewho k=0,0=0

is assessed for stability from its constituent harmonict efa

which are linearly stable to infantesimal perturbationgntk,
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Figure 6: Modal energiesE() for a history of dimensional
(Wo= 66,Ueqg = 6.83). Initially all modes decrease monaton-
ically from k = 0 in Ey. The first mode to recieve amplification
is k=1, which then picks-ufg = 2, and so on infinitem leading
to complete transition.

all time-periodic flows though pipes are linearly stable.

Direct Numerical Simulation

The relative influence of thk = 0 wave number was investi-
gated by direct numerical simulation of both oscillatord gul-
satile pressure-driven flows. Base flows of type (3) wereupert
bated withy Ey—g_,31 = 104, whereEy is the energy in mode
k as per the standard:

1
Ek:ﬁ/gu;;.ukrdg, (10)
hereQ is the meshed spectral-element plane (of whidk the
area) andi is the velocity field withu* the complex-conjugate.
For brevity we present only a single case.

The growth of modes in the periodic flow is dominated by, and
coupled to the axisymmetric mode. Subsequent modes experi-
ence self-similar fluctuations to= 1. Modesk = 1 — 4 expe-
rience significant growth, not predicted by the linear tlyeor

The peaking of the modal energy is followed by a sink towards
a laminar recovery position. For the transitional peribg-(

4 — 6) this means a return to a laminar profile from turbulent
patches; Figure 7. For higiWo there is very little phase-lag
between the recovery of the near-wall regions and that of the
centre-line. Perturbations near the wall have been fouptb(3

be several orders of magnitude smaller when compared to the
centre-line. Such phase-locked disturbances are chésdicte

of periodic flows.

Conclusion

The present study extends (and confirms) the work of (8) te gen
eral perturbations. We have found the least-stable Flagode

to be axisymmetric and axially invariant. Additionally, bge

of the Womerley number parameter — and noting the lineariar-
ity of both the operator and boundary conditions — we have de-
termined that all time-periodic pipe flows are vanishinglg-s
ble. This result, coupled with the known stability of Hagen—
Poiseuille flow, renders the comlpete family of pipe-flows li
early stable.
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Figure 7: Fluid velocity in the radial (v) direction over ttran-
sitional time; taken at two locations in the pipe — near th# wa
(r/R=0.98), and at the pipe centre-line/R@ = 0). AtWo= 66
there is very little phase-lag fo/R = 0.98 — 0. Phase-locked
turbulent patches are a signature of transitional perifioies.

Further work in DNS for time-periodic pipe flow has shown
that the azimuthal wave modes are highly coupled. The lgrges
by energy, isk = 0. We also demonstrate the active role that
k =1 — 4 take in the transitional stages of flow. Further work
in transient growth is required to support a by-pass tremmsit
conclusion.
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