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Abstract

This paper presents results from the application of a novel hy-
brid computational and theoretical technique to study the sta-
bility of a fluid-structure system that comprises fully developed
plane Poiseuille flow at transitional Reynolds numbers over a
finite flexible wall of streamwise extent. This builds upon our
recent work [10] involving a uniform inviscid flow interacting
with a flexible plate held at both its ends to include considera-
tion of the full spatio-temporally evolving, rotational flow dy-
namics. Although presently considering the two-dimensional
case the method may be extended to three-dimensions and arbi-
trary mean-flow fields other than plane Poiseuille.

Introduction

A numerical method is presented for the linear analysis of an
incompressible, perturbed rotational flow at moderate Reynolds
number interacting with a compliant surface. The linearised
Navier-Stokes equations are used to represent the flow using
a velocity-vorticity formulation that can accurately model per-
turbations without the need for turbulence models. This builds
upon our recent work [10] involving a uniform inviscid flow in-
teracting with a flexible plate held at both its ends to include
consideration of the full spatio-temporally evolving, rotational
flow dynamics.

In our modelling approach, we use the boundary-element
method (BEM) - see [7] for details - along with an Eulerian for-
mulation of the discrete vortex method (DVM) to determine the
perturbations in the flow field due to wall motion. We loosely
follow the approach of [4] who directly extracted the eigen-
modes for fluid-based instabilities in laminar boundary-layer
flow over a rigid wall. However, in our work, the flow field is
modelled by the continuity equation and the linearised pertur-
bation momentum equation written in velocity-vorticity form;
this formulation is akin to that of [3]. The flow field is spa-
tially discretised into rectangular elements on an Eulerian grid.
A vector of flow-field element strengths is related to the values
of a distributed vorticity field at control points through a matrix
of influence coefficients. These influence matrices are evalu-
ated computationally using an optimised fast multipole method
(FMM) to overcome speed and memory limitations involved
with the storage and evaluation of these large square matrix-
vector products. An implicit restarted Arnoldi method based on
Krylov subspace projections is then used to extract the eigenval-
ues and eigenvectors for the fully-coupled fluid-structure sys-
tem from this very large set of linear equations.

A schematic of the flow-structure system is presented in Fig.
1. The rotational flow field that is studied in this case com-
prises a fully developed Poiseuille flow between two plates. A
finite compliant section of the lower plate, of length LC, inter-
acts with the rotational flow field. The finite length compliant
section is composed of a simple elastic plate which may have
a uniformly distributed spring foundations and structural damp-
ing added. The system is similar to the configuration used by
[1]. Although this work uses a Poiseuille mean flow profile,

the robust computational method allows for the consideration
of any mean flow profile and fluid-structure configuration.

Figure 1: Schematic of the flow-structure system studied; the
spring and dashpot foundations are absent for an unsupported
elastic plate.

Background

Early work on compliant surfaces involved mainly analytical
studies involving infinite compliant walls and inviscid, irrota-
tional flow governed by Laplace’s equation. In these cases, ana-
lytical solutions were obtained for the stability of the linearised
flow-structure system, e.g. see the work of [2].

Subsequent investigation of finite compliant walls comprised
numerical studies such as [7]. These studies adapted panel
methods for the solution of Laplace’s equation in the fluid
domain, with the structural solution obtained using finite-
difference methods. Coupling of fluid pressures and structural
forces permitted solution of the strongly coupled flow-structure
system through a time-stepping routine.

Carpenter & Davies [1] introduced a rotational flow field, solv-
ing the linearly perturbed flow field in velocity-vorticity form
and then numerically coupling this to the structural solution.
The solution of the coupled equations adopted a time-stepping
method similar to [6] and therefore still produced results in-
volving transient behaviour for a narrow set of initial or inlet
conditions.

The use of Krylov subspace projection methods permit the ex-
traction of eigenvalues and eigenvectors (modes) from large ma-
trices. [4] analysed the linear spatio-temporal disturbance evo-
lution in a boundary layer with rigid walls. This study also for-
mulated the fluid equations (Navier-Stokes) in velocity-vorticity
form. Using the same techniques for extraction of eigenvalues,
[8] performed a similar linear analysis on an inviscid, finite-
length, flow-structure compliant wall problem like that of [6].

The first coupling of a discrete-vortex method for a gridless
velocity-vorticity solution method, to a non-linearly deforming
compliant wall was performed by [9]. This method accounted
for non-linear effects and gave DNS-type results for the coupled
system through a time-stepping solution.

The present work employs a linearised variation of the velocity-



vorticity flow solution and coupling of [9] along with struc-
tural solution and eigenvalue extraction methods similar to [4].
The strongly coupled model can be used to analyse the spatio-
temporal disturbance evolution and global stability of fluid-
structure systems, giving a broader spectrum of stability infor-
mation than practically available through the time-stepping so-
lutions such as [1].

Computational Method

A description of the computational method is presented below.
First, the equations and solution method for the fluid domain are
considered. The structural solution and coupling of the system
through the forcing pressure is then presented.

The equations are couched in finite difference form for the
streamwise representation while Chebyshev differentiation ma-
trices are used to evaluate the differential terms in the wall-
normal direction. The use of mixed finite-difference and
Chebyshev-differentiation matrices is more effective due to the
high elemental aspect ratio, which suffers from numerical in-
stability if finite difference representation alone is used in both
directions.

Fluid domain

The flow field is modelled by the Navier-Stokes equations in
linearised perturbation form as the continuity equation ∇.~up = 0
and the linearised perturbation momentum equation(
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Eqn. 1 may be expressed in velocity-vorticity form with per-
turbation vorticity ω. Maintaining an Eulerian reference frame,
and with mean-flow velocity profiles in the x and y directions
denoted U and V respectively, this becomes
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This formulation is seen in the work of Davies & Carpenter [3].
For a plane parallel mean flow profile V = 0 and U = f (y) and
therefore ∂Ω

∂x = 0. In this case Eqn. 2 is reduced to
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The flow field is spatially discretised into rectangular elements.
The vorticity contained within each rectangular element is ap-
proximated by a zero-order vortex sheet element. A vector of
flow field element strengths is defined as {γ}. These singular-
ity element strengths are related to the distributed vorticity field
as {γ}= [H]{ω}, where [H] is a matrix relating the distributed
vorticity field at control points, {ω}, to the singularity strengths.
In this case, [H] is a matrix consisting of only flow element
thickness in the y-direction on the diagonal. Singularity ele-
ments which enforce the no-flux condition at the flow-structure
interface are approximated by source(-sink) sheet elements, and
a vector of wall element singularity strengths is defined as {σ}.
The vector of y-direction perturbation velocities, vp in Eqn. 3,
at the flow elements is then{

vp
}
=
[
IV, f f

]
{γ}+

[
IV,w f

]
{σ} . (4)

[
IA,bc

]
is a matrix of coefficients that gives the A-velocity at

the centres of elements b when multiplied with strengths of ele-
ments c. A may be either U for x-direction or V for y-direction

velocity while b and c may be either f for fluid elements or w
for wall elements.

The strength of the wall singularity strengths is determined
through enforcing the no-flux boundary condition at the wall.

{σ}=
[
IV,ww

]−1 [D+
]
{η̇}−

[
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]−1 [IV, f w
]
{γ} , (5)

where
[
D+
]

is a matrix which averages wall nodal velocities to
give velocities at the wall panel centre points.

Substituting Eqn. 5 into Eqn. 4 gives the complete expression
for y-direction perturbation velocity as{
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For the case of plane Poisueille flow that is considered here then
∂Ω

∂y =− ∂U
∂y = 2. The vorticity gradient in the x-direction is cal-

culated using a second-order-upwinding finite difference matrix
such that {ω̇} =

[
DF,1

]
{ω}. Similarly, for the diffusive term

second-order gradients in the x and y direction are handled using
a centred finite difference and Chebychev differentiation matri-
ces respectively. Eqn. 3 then may be expressed in discretised
form as

[I]{ω̇}= [R]{ω}−2 [A]{η̇} , (7)
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]
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Structural solution

The linear motion of the compliant wall is governed by the one-
dimensional beam equation. Extra terms are added to account
for the addition of a uniformly distributed spring foundation
(Kη) and uniform dashpot-type damping (dη̇) to model the ef-
fects of energy dissipation in the wall structure.

ρmh
∂2η

∂t2 +d
∂η

∂t
+B

∂4η

∂x4 +Kη =−∆p(x,0, t) , (8)

where η(x, t), ρm, h and B are, respectively, the plate’s deflec-
tion, density, thickness and flexural rigidity, while p(x,y, t) is
the unsteady fluid pressure. In the present problem we apply
hinged-edge conditions at the leading and trailing edges of the
plate although in the method that follows there is no necessary
restriction on such boundary conditions.

Eqn. 8 may be represented in discretised form as

ρmh [I]{η̈}+∆{p}=
[
−B
[
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]
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]
{η}−d [I]{η̇} .

(9)

Boundary Conditions

To implement the deterministic boundary conditions Eqn. 5 is
modified to include calculation of the strengths of the flow ele-
ments that are closest to the wall in order to enforce the no-slip
condition. The rate of vorticity injection is then expressed as an
algebraic function of the other flow elements.

The perturbation flux and slip velocities at the wall elements are
given respectively by:
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where vn is the velocity of the panel in the wall-normal direction
which may be derived from the velocity at the nodes by vn =[
D+
]
{η̇}

By stating that the normal and tangential components of pertur-
bation velocity must be equal to zero at the wall then the wall
singularity strengths and near-wall fluid element strengths may
then be solved simultaneously by solving the linear system of
equations. Eqn. 11 gives an expression for the wall singularity
elements and near-wall fluid singularity strengths in terms of
remaining flow elements γ f , these expressions may be summa-
rized as:{
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0

]{
ω f
η̇

}
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where Hw is the element thickness in the y-direction for fluid
elements closest to the wall and

[
H f
]

is the diagonal-matrix of
element thickness excluding near-wall flow elements and matri-
ces
[
S f w
]

and
[
S f f
]

are the top and bottom halves of the matrix
solution of the right-hand side of Eqn. 11 respectively.

This expression for wall strengths may be substituted for Eqn.
5 in the development of the fluid equations and the derivation
of a fluid transport equation akin to Eqn. 7 may be derived.
However it is necessary to replace the columns that correlate to
the near-wall fluid elements in matrix [R] of Eqn. 7 with the
algebraic equivalents developed through Eqn. 12. The fluid
elements, ω, in Eqn. 7 may be broken into near-wall and far-
wall components ωw and ω f respectively and the equation may
be re-phrased as

[I]{ω̇}= [Rw]{ωw}+
[
R f
]{

ω f
}
−2 [A]{η̇} . (13)

Substituting Eqn. 12 into the first term of the right hand side
of Eqn. 13 gives an expression for the vorticity transport in the
discretised system as
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Pressure Evaluation and Coupling

Through the Lighthill mechanism, described in [5] the pressure
gradient along the wall is proportional to the rate of vorticity
creation (or injection). Similarly, vorticity must be injected to
at a rate that is equal to the generation of potential slip-velocity
at the wall (through the no-slip boundary condition) so that

ρu̇s = ργ̇w = − ∂p
∂s

. (15)

The expression for γ̇w may be derived from Eqn. 12 such that
γ̇w = [Mw]

{
Γ̇
}

where {Γ} is the time derivative of the vector
of element strengths on the right hand side of Eqn. 12. In this
case the perturbation pressure at the wall may be expressed as a
numerical integral from the leading edge in matrix form as

{∆p}= [MC]

{
ω̇ f
η̈

}
, (16)

where
[MC] =

[
Σ
↓
Cdx [Mw]

]
, (17)

and dx is the fluid element widths and
[
Σ
↓
C [Mw]

]
represents the

cumulative sum of the rows of matrix [Mw].

For a domain with periodic boundary conditions the pressure
becomes an integral from the value at the upstream edge of the
domain which may have an arbitrary value, therefore the pres-
sure is normalised with respect to the average wall pressure to
give

{p}=
[
[MC]+Σ

↓ [MC]
]{

ω̇ f
η̈

}
, (18)

where
[MP] =

[[
[MC]−Σ

↓ [MC]
]]

, (19)

and Σ↓ [MC] represents the absolute sum of the columns of ma-
trix [MC].

Results

Time-integration results

For the results presented below we use the dimensionless prop-
erties for the compliant wall that are defined in [1]. For dimen-
sional reference, at a relatively high Reynolds number of 60000
this is dimensionally similar to air passing through a 2m wide
channel with central velocity of 1m/s. The compliant wall is
dimensionally similar to very lightweight but stiff rubber-type
material of 2mm thickness with a Young’s modulus of 0.2GPa
and density of 166kg/m3 on a very soft springy foundation of
0.53N/m3.

Figure 2: Plot of vorticity perterbation evolution at a monitor
point located centre-channel at a downstream location of x =
0.75L for the case of (feint line) a rigid channel and (bold line)
a compliant insert at a Reynolds number of 6000.

Eigenvalue solution

Results are presented for the same system as that presented
above except that the compliant wall properties are modified
such that the finite flexible wall is of length LC = 6 m centred on
the lower boundary. The physical properties of the flexible wall
are such that: thickness h = 0.005 m, density ρ = 1000 kg/m3,
Young’s modulus E = 2.592e7 Pa. Spring-backing is absent
and a dashpot damping coefficient of d = 10 N.s/m is used.

The eigenvalue problem was solved for the rigid-wall system
for a range of Reynolds numbers from Re = 5000 to 9000. The
eigenvalues with largest real parts are plotted in Fig. 3. The
results from this analysis indicate that instabilities (eigenvalues
with positive real parts) begin to appear around Re= 7200. This



is in good agreement with the Orr-Sommerfeld relation which
predicts the instability onset in a similar range of Reynolds
numbers.

Figure 3: Real part of the system eigenvalues with largest real
parts for reynolds numbers Re = 5000, 5500, 6000, 6500 and
9000 for channel flow with a rigid wall.

Figs. 4 show the eigenvector that corresponds to the eigenvalue
solution with the largest real part (most unstable) at a Reynolds
number of Re = 6000. The real part of the fluid-structure eigen-
value with largest real part is −1.698×10−3 which is approxi-
mately 4% lower than the rigid-wall case which has a value of
−1.63×10−3.

Figure 4: Contours of flow field vorticity (left) and wall modes
(right) for a particular eigenmode of the flow-structure system
at an instant in time at a Reynolds number of 6000.

Conclusions

This paper has presented a new solution method for the linear
analysis of moderate Reynolds number flows interacting with
a compliant surface. The preliminary results indicate that the
computational method is robust and leaves a system of equa-
tions that are well-posed for linear analysis and eigenvalue ex-
traction through Krylov subspace projection methods.

The system permits resolution of detailed two-dimensional flow
phenomena at transitional Reynolds number with significantly
fewer elements than would be required for a similar system
model posed in primitive (u,v, p) variables. Initial results in-
dicate that Ny = 32 Chebychev collocation points in the wall-
normal direction and Nx = 100 finite difference node points in
the streamwise direction are sufficient to resolve transitional
flow phenomena at around Re = 5000 in a domain of chan-
nel height Ly = 2 m and length Lx = 30 m. The results from

this spatio-temporal model give good agreement with the Orr-
Sommerfeld stability solution.

Investigation of the system eigenvalue solution both with and
without a flexible panel present indicated that the addition of
a flexible wall with structural damping improved global sys-
tem stability by approximately 4% at a Reynolds number of
Re = 6000. This indicates that the addition of periodically-
spaced finite compliant walls with structural damping may be
able to delay the onset of instabilities to higher Reynolds num-
bers. Results using the compliant wall properties of [1] re-
sulted in a significant deterioriation of system stability. The
reasons for this discrepancy in modelled outcomes is left for
future work.
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