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Abstract

The streamwise evolution of a turbulent boundary layer (TBL)
developing under constant pressure on a smooth wall is consid-
ered. The closure problem is described for the zero pressure
gradient (ZPG) flow where the only assumptions made are the
use of classical similarity laws, such as Prandtl’s law of the wall
and Coles’[1, 2] law of the wake, together with the mean conti-
nuity and mean momentum differential and integral equations.
The important parameters are identified and the problem is re-
duced to one semi-empirical input with the assumption that the
Reynolds shear stress can be described by a two-parameter fam-
ily. Good agreement is shown with the experimental data.

Introduction

Here we compute the evolution of turbulent boundary layers de-
veloping in a zero-pressure gradient. Unlike channel or pipe
flows where there is a minimum development length for the
flow to be regarded as fully developed1, a boundary layer is con-
tinuously evolving and can therefore never be fully developed.
Comparisons of previous experimental data sets (as discussed in
the review of Marusic et al [4]) have shown significant differ-
ences between different studies even though local parameters,
such as Rθ (Here, Rθ is the Reynolds number based on free
stream velocity (U1) and momentum thickness (θ).) is matched.
A likely cause for these disparities are the different evolution
conditions for each boundary layer. Nagib et al [8]) have dis-
cussed this issue in the context of a well-behaved ZPG bound-
ary layer, but this again relates the specific initial conditions
each experimental boundary layer evolves from. In this paper
we will consider the issue of evolution and attempt to develop a
framework for computing the evolution of ZPG boundary layers
starting from arbitrary initial conditions.

Perry et al [9], initially developed a preliminary mathematical
framework for computing the evolution of turbulent boundary
layers. It was found that there are 4 parameters that control the
streamwise evolution of the boundary layer and the Reynolds
shear stress distribution namely S, Π, β and ζ. Here, S =U1/Uτ

where U1 is the local free stream velocity and Uτ is the friction
velocity. Π is the wake parameter, β = (δ∗/τ0)(dp/dx) is the
Clauser pressure gradient parameter where δ

∗ is the displace-
ment thickness, p is the free stream static pressure, τ0 is the
wall shear stress, x is the stream wise distance and the non equi-
librium parameter, ζ = SδdΠ/dx where δ is the boundary layer
thickness. The definitions of the law of the wall and law of the
wake can be used to formulate a mean velocity defect law of the
form,

U1−U
Uτ

= F[η,Π]. (1)

Perry et al [9] had shown that integration of the streamwise mo-

1The definition of fully developed requires that all mean flow quan-
tities and all higher order turbulence quantities should become indepen-
dent of streamwise location.

mentum integral equation of the form,
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(Here, the shape factor, H = δ
∗
/θ. Where, δ

∗ and θ are the
displacement thickness and momentum thickness respectively.
C f is the skin friction co-efficient) coupled with equation (1)
leads to an expression for the total shear stress of the following
form,

τ

τ0
= f1[η,Π,S]+g1[η,Π,S]ζ+g2[η,Π,S]β (3)

where η = z/δ and z is the wall-normal distance. Here f1, g1
and g2 are known analytical functions where their precise form
depends on the wall-wake formulation of Jones [3],
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Here, κ = 0.41 is the Karman constant and A is the universal
smooth wall constant, taken here to be 5.0. There are many
wall-wake formulations available in the literature, for example,
see [6].

Evolution and Closure Equations

Calculating the streamwise evolution of the ZPG turbulent
boundary layer is possible by solving a coupled set of ODE’s
which come from the momentum integral equation, law of the
wall, law of the wake and the definitions of ζ and β,

dS
dRx
=

χ[Rx,K]R[S,Π,ζ,β]

SE[Π]exp[κS]
(5)
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Here,
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Rx = xU0/ν

χ[Rx,K] =U1(x)/U0

E[Π] = exp[−κA−2Π+1/3]

β = −C1S2E[Π]exp[κS]K (7)

where U0 is the reference free stream velocity (free stream ve-
locity on top of the trip, i.e, U0 =U1[0]), Rx is the Reynolds
number at different stream wise stations.



Evolution equations were restricted in the initial work of Perry
et al [9] and the only problem that could be solved was the so
called quasi equilibrium2 flow cases where it could be assumed
that ζ was sufficiently small to neglect its effect even though
Π is permitted to vary with x. Thus the problem reduces to
considering the relation,

C [Π,β,S] = 0 (8)

where for a given Π it is assumed that the velocity defect distri-
bution is fixed and the shear stress distribution is fixed (approx-
imately). Hence from data, if we know β at a given S for a fixed
Π (i.e. for one experimental data point), then for this fixed Π

we can find β versus S for all S using equation (3) to ensure that
τ/τ0 profiles are matched (approximately for all S). It is found
that for S sufficiently large β = βa (the asymptotic value of β)
and C is no longer a function of S. If this procedure is repeated
for different values of Π, a one-to-one relationship between βa
and Π can be found which is based on experiments. This formu-
lation is consistent with the universal relation for eddy viscosity
ε, i.e. ε/(δcUτ) = φ[η,Π]. Unfortunately such formulations are
known to break down in non-equilibrium flows, i.e. flows with
significant ζ contribution - see Marusic & Perry [5] for an ex-
ample.

In the case of zero pressure gradient boundary layers,

U0 =U1

χ[Rx,K] = 1

K =
ν

U2
1

dU1

dx
(9)

and the acceleration parameter, K = 0, because the free stream
velocity (U1) is invariant with respect to x (i.e. dU1/dx = 0).
Therefore, in summary, the streamwise evolution of ZPG flow
can be computed using equations (5), (6) and (7). Here we have
to solve three equations to find four unknowns namely S, Π, ζ

and β. This is not possible unless we have a fourth equation
comprising all the unknown parameters and therefore the fourth
(i.e., closure) equation has to be derived empirically, which is
of the following form,

F[Π,S,β,ζ] = 0. (10)

For ZPG turbulent boundary layer, Clauser’s pressure gradient
parameter, β = 0 which reduces (10) to the following form,

F[Π,S,ζ] = 0. (11)

Now, a two parameter family of shear stress profiles of the form,

τ

τ0
= f [η,Π,ζa] (12)

is suggested and when used in conjunction with (3) some infor-
mation can be obtained regarding formulation (10) as follows.
Consider the (S,ζ)-plane. If such a plane contains an experi-
mental data point, then S, Π and ζ are known for that data point
and so also is τ/τ0 versus η from (3). Trace out a curve for in-
creasing S of fixed shear stress profile shape on the (S,ζ)-plane.
By taking S →∞ we obtain asymptotic values of ζ (i.e., ζa).

2An equilibrium boundary layer, according to the definitions of
Townsend [12, 13] and Rotta [11] requires all mean-relative mo-
tions and energy containing components of turbulence (for example,
Reynolds shear stress and the turbulent intensities) to have distributions
that become invariant with streamwise development when scaeld with
local length and velocity scales - see Narasimha & Prabhu [7]

Going to S→∞ is simply a convenient curve-fitting procedure
and cannot be approached experimentally.

This process of keeping the profile shape fixed will be referred
to as profile matching which was given by Perry et al [10]. i.e.,
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where τ/τ0 and (τ/τ0)D are the shear stress distribution at any
point on the (S,ζ)-plane for a fixed Π and at a known datum
point respectively. Taking (13) to S →∞ means that ∂/∂ζ ≡

∂/∂ζa as the derivative and we can show generally that

A[Π,S]+B[Π,S]ζ =C[Π]ζa (14)

where A, B and C are known analytical functions. Their precise
form depends on the law of wall-wake formulation (4). If this
process is repeated for different Πs then we obtain a relationship
between Π and ζa and we thus have a known function ψ,

ψ[Π,ζa] = F(Π,S→∞,ζa) = 0 (15)

which is the asymptotic closure equation.

Experimental Setup

In order to evaluate the evolution calculation procedure, a series
of mean velocity profile measurements were made along the
length of the flat plate and the mean flow parameters such as
Π, δ, S, ζ and Uτ were obtained by fitting the equation (4).

The experiments were performed in an open blower wind tunnel
at The University of Melbourne. The wind tunnel has a settling
chamber containing honeycomb and screens. It has a contrac-
tion area with a ratio of 8.9:1 that leads into an initial inlet sec-
tion area of 940mm × 375mm. The roof of the wind tunnel is
fully adjustable to change the pressure gradient accordingly, and
the tunnel has a working section length of 6700 mm. For this
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Figure 1: Co-efficient of pressure (Cp) along the wind tunnel .

experiment, the measurements were performed on ZPG, at 16
different streamwise locations. The ZPG pressure gradient was
adjusted so that the coefficient of pressure Cp is within ±0.01
throughout the working section as shown in fig (1). Equation
(16) shows how to obtain Cp, where p is static pressure mea-
sured by the wall tapping, p0 is the reference static pressure, pt
is the reference total pressure, and U1 is the free stream velocity.

Cp =
p− p0

pt − p0
=

p− p0
1
2 ρU2

1

= 1−(
U
U1

)
2

(16)



U∞ x Π δ Uτ ζ S l+ Rδ∗ Rθ Rx
(m/s) (m) (m) (m/s)
9.9076 0.5 0.5934 0.0194 0.43809 0.1509 22.6153 22.5 1815 1237 325252
10.046 0.895 0.7315 0.0257 0.42212 0.2144 23.7979 21.7 2640 1834 585025
10.035 1.425 0.8728 0.0321 0.40014 0.2151 25.0791 20.3 3454 2384 936658
10.004 2.400 0.8887 0.0473 0.38440 0.0066 26.0255 19.5 4944 3447 1585485

Table 1: Mean flow parameters for 4 out of 16 stations are shown. Flow parameters such as Π, δ and Uτ are obtained by fitting (4)
on the mean velocity profile. l+ is the non dimensionalised wire length. Rδ∗ , Rθ and Rx are Reynolds numbers based on displacement
thickness, momentum thickness and streamwise distance respectively

Results and Discussion

In this experimental study, a flow case with a free stream ve-
locity of nominally 10 m/s was investigated with a total of 16
mean-flow stations. All of the measurements are performed us-
ing single hot-wire constant temperature anemometry (CTA).
The sensor used was platinum-wollaston wire of 5µm diameter
with an overheat ratio of 1.8. Mean flow parameters for 4 out of
16 stations are shown in Table (1).

Figure 2: Evolution of wake parameter (Π) for different Non
dimensionalised free stream velocity (S). Box (◻) symbols rep-
resent the experimental data points, the solid line corresponds
to evolution calculations with same initial conditions as the ex-
perimental data and dotted lines correspond to evolution calcu-
lations with different initial conditions.

The shear-stress profile matching technique was used to find the
corresponding ζa values for each experimental station. In order
to calculate the evolution of this flow a functional relationship
for (15) needs to be established. Using the experimental data of
this study a second order polynomial is proposed for (15)

ζa = −4.18Π
2
+5.79Π−1.81 (17)

By using equations (14) and (17), (5) and (6) can now be solved.
Figures (2), (3) and (4) show typical calculations for the evo-
lution of ZPG turbulent boundary layers from different initial
conditions. From figures (2) and (3), we can see that the ZPG
turbulent boundary layer is not an equilibrium layer, at least for
finite S, since Π varies with Rx rapidly. Coles [2] notes that for
Rθ less than about 2500, Π drops significantly for decreasing
Rθ. This effect has been incorporated into the analysis, though
this should have a negligible effect on flow at high Rx. Figures
(3) and (4) show the evolution of parameters Π and S versus Rx.
Figure (5) shows the evolution of Reynolds number based on
momentum thickness versus Reynolds based on x. It is obvi-
ous that Rθ grows linearly with respect to stream wise Reynolds
number (Rx). To help determine the range in which (17) might

Figure 3: Evolution of wake parameter (Π) for different stream-
wise Reynolds number (Rx). Star (☆) symbols represent the
experimental data points, the solid line corresponds to evolu-
tion calculations with same initial conditions as the experimen-
tal data and dotted lines correspond to evolution calculations
with different initial conditions

Figure 4: Evolution of skin friction factor (S) for different
streamwise Reynolds number (Rx). Star (☆) symbols repre-
sent the experimental data points, the solid line corresponds to
evolution calculations with same initial conditions as the exper-
imental data and dotted lines correspond to evolution calcula-
tions with different initial conditions

be valid, a series of initial conditions were tried. As can be seen
in the figures (2) and (3) solution trajectories become constant
at about Π ≈ 0.9 as expected. (It is noted that the value of Π

depends on the wake formulation used. In this study equation
(4) was used. If we use the Coles’ [1] wake function, solution
trajectories become constant at about Π ≈ 0.55).



Figure 5: Evolution of momentum thickness Reynolds number
(Rθ) for different streamwise Reynolds number (Rx). Star (☆)
symbols represent the experimental data points, the solid line
corresponds to evolution calculations with same initial condi-
tions as the experimental data.

Figure 6: Experimental data of this study. The solid line corre-
sponds to equation (17).

Conclusion

A framework is described that allows us to study streamwise
evolution of boundary layers evolving from specific upstream
conditions. The framework involves using the law of the wall,
the law of the wake, together with the momentum integral
and differential equations. The evolution calculation scheme
is compared to an experimental ZPG boundary layer evolving
over a 6m plate and good agreement is observed.
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