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Abstract 

Effects of oscillating plates on the plane mixing layer, its 
developing region and jet were experimentally investigated. The 
flow was formed by the jet issued from a two-dimensional nozzle 
and surrounding quiescent air. Two plates oscillate perpendicularly 
in relation to the main flow. Mean and fluctuating velocity 
components were measured by hot-wire anemometers. With the 
oscillation disturbance of the plate, self-preservation was promoted 
and the width of the layer was enhanced. The transition process 
with the disturbance was enhanced by an interaction of the inherent 
periodic variation and the disturbance induced by the plate. 
 
Introduction 

A jet is a fundamental flow that can be seen widely in the natural 
world and industrial machinery. Therefore, it is important to 
understand its characteristics and properties. Many studies have 
been published on it over the years, and a great number of them 
introduced various kinds of disturbance in laminar jet, inducing the 
transition to turbulence.  
 
In free shear flows such as a jet, in the transition process a periodic 
disturbance appears at first, followed by the harmonics and 
subharmonics, and finally an irregular disturbance dominates 
farther downstream. In this way, in power spectrum distribution, a 
large peak appears, then many peaks gradually appear, and finally 
disappear. The respective processes include a linear region when a 
disturbance amplifies exponentially, a nonlinear region where 
harmonics and subharmonics of the fundamental wave appear, and 
an irregular region where irregular fluctuation dominates, 
respectively. Exponentially increasing velocity fluctuation in space 
[8] and time [9] was analyzed by Michalke. Freymuth confirmed 
this analysis experimentally [2]. Due to the sensitivity of spatially-
developing shear flow to the outer disturbance, outer forced 
disturbance was added to jets or mixing layers. Then many studies 
were conducted in which the disturbance increased instability or 
promoted transition. 
 
In the study of forced transition, experiments have been performed 
to introduce a periodic disturbance with a frequency approximately 
equal to the fundamental frequency occurring in the natural 
transition process. An additional style of the disturbance is roughly 
classified into two; one in which a speaker produces a sound wave 
disturbance [1,2,5-7,10,12,13] and another in which a flap [3] or 
piezo film actuator [11] is oscillated. A successful method was 
introduced by which a forced disturbance whose frequency was 
approximately the same as the fundamental frequency of the flow 
promoted a turbulent transition. But few experiments have been 
conducted in which the disturbance frequency was considerably 
different from the fundamental one. Therefore, in the present study, 
a disturbance of 5 Hz is introduced two orders of magnitude lower 
than the fundamental frequency. To produce such a low-frequency 
disturbance, an oscillating device is more appropriate than a sound 
wave. Additionally, the oscillating device can add a local 

disturbance, although the sound induces instability in the whole 
field. 
 
A method to measure the progress of the transition process for the 
mixing layer remains to be discovered. On the other hand, for the 
wake, Sato and Saito proposed the randomness factor as the 
measure [14]. It describes the degree of randomness of the velocity 
fluctuation, which is defined as the ratio of the energy contained in 
the continuous spectrum to the total energy. We used it for the 
present transition process of the mixing layer and discussed its 
validity. 
 
Experimental Apparatus and Methods 

A wind tunnel of blowing type was used in which air is blown into 
the measurement section from a two-dimensional nozzle exit of 
aspect ratio 31 (310 mm in width and 10 mm in height). The flow at 
the exit has a velocity gradient within 1.6 mm from the upper and 
lower nozzle walls, respectively, while the velocity is kept constant 
in the middle region of the height (7 mm). Two side walls 310 mm 
apart for a whole measurement section were installed to secure the 
two-dimensionality of the flow.   
 
Two oscillation plates 2 mm in thickness were then equipped across 
the whole width to produce a disturbance. The plates oscillate 
sinusoidally in relation to the flow at a frequency, fe, of 5 Hz. This 
frequency is two orders of magnitude smaller than the fundamental 
frequency in the natural transition process, which is, approximately, 
500 Hz. The flow field and coordinate system are shown in Figure 1. 
The upper half of the flow field is shown. The bottom of the 
oscillating plate becomes flush with the nozzle wall surface when it 
rises to its highest point, and then descends by 0.25 mm from the 
surface at most. This value was chosen so that no additional 
disturbance occurred. The Strouhal number based on this value, 
plate oscillation frequency, fe, and nozzle exit velocity, U0, is about 
1.7×10-4. In addition, another oscillating plate is installed in the 
lower half of the flow field symmetrical with the nozzle centerline, 
y = 0. The plate oscillates symmetrically with the former plate. In 
other words, the nozzle height 10 mm is decreased 0.5 mm at the 
moment when the two plates protrude maximally from the nozzle 
respective surfaces. An rpm-controlled motor was used for the plate 

Figure 1. Schematic diagram of two-dimensional mixing layer 
and coordinate system. 



oscillation. The revolution is transmitted to two cams by belts, and 
then the revolution of each cam is transmitted to the protrusion of 
each oscillating plate. The noise of the motor and cams were 
checked and confirmed not to affect the flow transition. A photo 
sensor signal corresponding to the angle of rotation of this cam is 
output, and the phase of the plate oscillation is detected with it. Two 
types of experiments were performed. In one, the plates remain 
stationary so that the plates do not narrow the nozzle exit section 
(stationary state). In another, the plate oscillated at a frequency of 5 
Hz (oscillating state). In any case, the Reynolds number based on 
the nozzle exit velocity, U0 ⋍ 7.5 m/s, and nozzle exit height, h, 
was 5000. 
 
X-shaped hot-wire probes with two tungsten sensing elements, each 
5 µm in diameter and 1 mm in length, were used for the 
measurements. Output voltage was sampled at a sampling 
frequency of 5 kHz for about 52 seconds. This interval is equivalent 
to about 260 oscillations when the plates oscillate. The 
measurements were conducted in a range of y ≧ 0. 
 
Results and Discussion 

Effect of Disturbance on Fluctuating Velocity 

First, we describe the effects of the disturbance from oscillating 
plates on the fluctuating velocity. 

 

Figure 2 shows distributions of rms value of the fluctuating velocity 
in the streamwise component. The normal position, y, is normalized 
by half of the nozzle exit height, h/2, and rms value of the 
fluctuating velocity, u’, is normalized by the local centerline 
velocity, Um. Just after the nozzle (in the region where x/h is small), 
the fluctuating velocities are low in both cases. Downstream, the 
values increase and the position y/(h/2) at which the value reaches 
maximum almost coincides with the position where mean velocity 
gradient ∂U/∂y becomes maximum in the mean velocity profiles 
(not shown here). In the region where the potential core exists 
(stationary state, x/h ≦ 6; oscillating state, x/h ≦ 3), the value 
reaches maximum at y/(h/2) = 1 since the region where ∂U/∂y exists 
is limited to the very narrow mixing layer near the tip of the nozzle. 
As the potential core becomes narrower farther downstream, the 
position where ∂U/∂y becomes maximum so the rms value reaches 
maximum shifts away from the center, y/(h/2) = 0. In the oscillating 
state, this department from the center side occurs farther upstream 
than in the stationary state. In addition, values in the oscillating 
state are larger than in the stationary state just after the nozzle. 
Hence, it is found that the phenomena resulting in the natural 
transition process appear farther upstream due to the periodic 
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disturbance by the oscillating plates. Furthermore, for 2.5≦ x/h ≦
4 in the stationary state and for 1 ≦ x/h ≦ 3 in the oscillating 
state, there is another smaller maximum on the smaller side of 
y/(h/2). This second maximum will be discussed in the last section.    

 

Progress of Laminar-Turbulent Transition 

In this section, the progress of the laminar-turbulent transition will 
be discussed from the spectral point of view. 

 

Figure 3 shows the power spectrum distribution for the fluctuating 
velocity in the streamwise component at the position y where u’ 
reaches maximum in each streamwise station. In the stationary state, 
just after the nozzle the spectrum at the fundamental frequency, f0 = 
400 ~ 500 Hz, indicates the peak value. Farther downstream the 
harmonics and subharmonics stand out due to the nonlinear 
interaction. Finally, the distribution turns into the continuous 
spectrum. Thus, the turbulent transition process typical of jet flow 
can be confirmed. In the oscillating state, just after the nozzle peaks 
at the plate oscillating frequency, fe = 5 Hz, the subharmonic one, 
fe/2, and the fundamental frequency also stands out. This plate 
oscillation promotes the transition into the continuous spectrum. 

 

We also obtained the randomness factor as a measure of the 
progress of the laminar-turbulent transition. It was calculated as a 
ratio of the continuous spectrum area to the total area in the power 
spectrum distribution. Figure 4 shows the streamwise variation of 
the randomness factor. The factor was obtained from the power 
spectrum distribution at the position y where u’ reaches maximum 
in each streamwise station as shown in Figure 3. In the stationary 
state, just after the nozzle, the randomness factor reaches 
approximately unity as there is no periodic variation. The values 
decrease downstream and reach minimum at the end of the linear 
region (stationary state, x/h = 3; oscillating state, x/h = 1.5) because 
of the appearance and amplification of periodic variations. Farther 
downstream, the values tend to increase due to the fact that the 
periodic variations attenuate and part of the continuous spectrum 
recovered. The values reach nearly unity at x/h ⋍  16 in the 
stationary state and x/h ⋍ 10 in the oscillating state. The turbulent 
transition can be assumed to be completed in these stations. Thus, 
in the latter process, the factor is effective as a quantitative indicator 
of the progress of the transition process. However, Sato and Saito 
[14] had not reported the fact that in the former process the 
randomness factor decreases until the periodic variations appears in 
the laminar flow. Although the intermittency factor that is used for 
the wall boundary layer increases monotonically from 0 to 1 with 
the progress of transition, the randomness factor, as mentioned 
above, first decreases, then increases and reaches unity again. 
Consequently, there is an inconvenience that the randomness factor 
indicates the same value at two stramwise positions. 

 

Next, in order to visualize the turbulent transition, Figure 5 shows 
the isocontour lines of the randomness factor in the x-y plane. Just 
after the nozzle, the region where y/(h/2) is large was not measured. 
It is found that the randomness factor is not constant in y-direction 
as well as x-direction. In the stationary state, within the linear 
region x/h ≦ 3, the randomness factor reaches minimum at y/(h/2) 
⋍ 1 where the fluctuating velocity reaches maximum. Therefore, it 
is found that the periodic variation contributes to the increase of the 
fluctuating velocity. The minimum value within the whole region 
lies within the nonlinear region 4 ≦ x/h ≦ 5 along the centerline, 
y/(h/2) = 0 where little of the potential core remains. The fact that 
the randomness factor does not reach minimum at y/(h/2) ⋍ 1, 
where the fluctuating velocity reaches maximum, implies that the 

Figure 2. Distributions of streamwise fluctuating velocity:  
△, x/h = 0.5; , x/h = 2; ▲, x/h = 3; ○, x/h = 4;  

, x/h = 6; ●, x/h = 8; □, x/h = 10; , x/h = 14;  
, x/h = 20.  



increase in the fluctuating velocity within the nonlinear region is 
affected more by the mean velocity gradient ∂U/∂y than the periodic 
variation. In the oscillating state, within the linear region x/h ≦ 
1.5, the randomness factor reaches minimum at y/(h/2) ⋍ 1 where 
the fluctuating velocity reaches maximum. The minimum value 
within the whole region lies in 1 ≦ x/h ≦ 2 along y/(h/2) ⋍ 1, 
within the nonlinear region. In the nonlinear region the value along 
the centerline, y/(h/2) = 0, is smaller than the one along y/(h/2) ⋍ 1. 
This is the same as in the stationary state, where the nonlinear 
region of the minimum value is along the centerline, y/(h/2) = 0. 
Hence, at the streamwise positions in which the potential core 
barely remains, the randomness factor indicates small values in the 
potential core also in the oscillating state. Just as in Figure 2, it is 
seen from Figure 4 and 5, that the laminar-turbulent transition is 
promoted by the disturbance induced by the oscillating plate. 

 

Relation between Periodicity and Fluctuation 

Finally, the relationship between the two maximums in the 
fluctuating velocity distribution and the periodic variation is 
examined. 

 

The distributions of the fluctuating velocity and the randomness 
factor are shown in Figure 6. In Fig. 6(a) and Fig. 6(c), the power 
spectra for the fundamental frequency, f0, and the subharmonic 
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frequency, f0/2, and particularly in Fig. 6(c) for the plate oscillating 
frequency, fe, are also plotted. In the stationary state, Fig. 6(a) shows 
the result at x/h = 2.5 where the second maximum of the fluctuating 
velocity appears on the smaller side of y/(h/2). At y/(h/2) ⋍ 0.95, 
where the fluctuating velocity reaches maximum, the randomness 
factor reaches minimum and the power spectrum for the 
subharmonic frequency, f0/2, is large. On the other hand, at y/(h/2) 
⋍ 0.7, where the fluctuating velocity reaches the second maximum, 
the randomness factor reaches the local minimum and the power 
spectrum for the fundamental frequency, f0, is large. Hence, the 
fluctuating velocity becomes large at positions where the 
fundamental or subharmonic wave becomes dominant, so the 
periodic variation contributes to the two maximums of the 
fluctuating velocity. Fig. 6(b) shows the result at x/h = 6, within the 
nonlinear region where the regular variations largely disappear. The 
second maximum of the fluctuating velocity on the center side of 
the nozzle disappears. So the fluctuating velocity reaches maximum 
at only one position, y/(h/2) ⋍ 1, where the randomness factor does 
not become low. Thus, the periodic variations no longer contribute 
to the maximum of the fluctuations in the nonlinear region.  

 

In the oscillating state, Fig. 6(c) shows the result at x/h = 1.5 where 
the second maximum of the fluctuating velocity appears at y/(h/2) 
⋍ 0.7. At this position, although the randomness factor does not 
reach minimum, the power spectrum for the fundamental frequency, 
f0, indicates a small maximum. At y/(h/2) ⋍  0.95, where the 

Figure 5. Isocontour areas of randomness factor. 

Figure 4. Streamwise variation of randomness factor. 

Figure 3. Power spectrum distribution for the fluctuating velocity  
in the streamwise component. 
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fluctuating velocity reaches maximum, the randomness factor is 
low and the power spectra for subharmonic frequency, f0/2, and 
plate oscillating frequency, fe, are large. Hence, in the oscillating 
state, periodic variation of not only harmonic and subharmonic 
frequencies but also the one induced by plate oscillation contributes 
to two maximums of the fluctuating velocity in the linear region. 
Fig. 6(d) shows the result at x/h = 4, within the nonlinear region 
where the regular variations largely disappear. The second 
maximum of the fluctuating velocity on the center side of the 
nozzle disappears. So the fluctuating velocity reaches maximum at 
only one position, y/(h/2) = 1.1, where the randomness factor does 
not become low. Therefore, just in the stationary state, the periodic 
variations no longer contribute to the maximum fluctuations in the 
nonlinear region. 

 

Conclusions  

In the oscillating state, the phenomena that occur in the natural 
transition process appear farther upstream so that the laminar-
turbulent transition is promoted by the disturbance induced by the 
oscillating plate. 
 
In the linear region, periodic variation contributes to the maximums 
of the fluctuating velocity, whereas in the nonlinear region, the 
periodic variation is attenuated and does not contribute to the 
maximum of fluctuating velocity. 
 
As an indicator of the progress of the transition process, the 
randomness factor proposed by Sato and Saito [14] is applied to the 
present study. In the process in which the periodic variation in 
velocity turns into an irregular variation, the randomness factor 
increases monotonically, and is regarded as a quantitative indicator 
of the progress of transition process. On the other hand, farther 
upstream, in the process in which the periodic variations appear in 
the laminar flow, the randomness factor decreases monotonically. 
Thus, the fact that the randomness factor indicates the same value at 
two streamwise positions makes for difficult handling. 
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Figure 6. Distributions of fluctuating velocity, randomness factor and power spectrum: (a) and (b), stationary; (c) and (d), oscillating. 
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