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Abstract 

Direct numerical simulations (DNS) are carried out to investigate 

fully developed turbulent heat transfer in a pipe at low Kármán 

number (Reτ = 171) and different Prandtl numbers (Pr = 0.026, 

0.1, 0.2, 0.4, 0.71 and 1.0) using spectral element method. The 

isoflux boundary condition is applied on the pipe walls and 

temperature is considered as a passive scalar. The grid resolution 

used in the present computation in terms of wall units are [Δz+, 

Δr+, RΔθ+] = [14.3, 0.5-3.6, 8.4]. Important turbulent quantities 

such as the mean temperature, rms of temperature fluctuations, 

and both streamwise and radial turbulent heat fluxes are 

calculated to analyse the effect of Prandtl number. Numerical 

data from the current computation shows good agreement with 

other available DNS data, validating the current numerical 

model.  

Introduction  

Over the past ten years, researchers have carried out DNS of 

turbulent heat transfer in a pipe because of its importance in a 

wide range of applications such as heat exchangers, air 

conditioning systems, combustion chambers and cooling 

passages. Useful information of blood flow through stenosis 

arteries where thermal inhomogeneity exists owing to 

accumulation of macrophages or inflammatory cells on plaques 

can also be obtained from such simulations. Turbulent heat 

transfer is usually more difficult to study because of its 

dependence on both Prandtl and Reynolds numbers. DNS at high 

Re requires very fine resolution to capture all turbulent length 

scales; however numerical computation with passive scalars at 

high Pr is even more challenging due to the thickness of the 

thermal boundary layer. The ratio of thermal boundary layer (t) 

to the velocity boundary layer (u) is t/u Pr-1/3. Thus, the 

thermal boundary layer is a factor of 2 thinner than the velocity 

boundary layer at Pr = 10. 

 

Figure 1. Physical model of the present problem along with the co-

ordinate systems.  

Many researchers have carried out DNS of the velocity field at 

high Re for both channel and pipe flows. However, a literature 

survey reveals that DNS of turbulent heat transfer in pipe flows is 

scarce. The present paper presents data of lower and higher order 

thermal statistics of turbulent heat transfer in a smooth pipe 

(figure 1) for different Pr (i.e. liquid-metal and gases as the 

working fluids). A summary of the current study compared with 

many other DNS data is shown in table 1. 

DNS 

Studies 
L/D Δz+ Δr+ RΔθ+ ReD Reτ Method Pr 

Present 2π 14.3 
0.5-

3.6 
8.4 5000 171 SEM 

0.026, 0.1, 

0.2, 0.4, 

0.71, 1.0 

Satake and 

Kunugi [3] 
7.5  10.5  

0.29-

1.04  
8.84  5300  180  FVM  0.71 

Piller [4] 6.33  7.03  -  6.28  5300  180  FVM 0.71 

Redjem-

Saad et al. 

[5] 

7.5  20  0.01-7  10  5500  186  FDM  0.026 

7.5  10  0.01-5  10  5500  186  FDM 
0.1, 0.2, 

0.4, 0.71, 

1.0 

 
Table 1. Comparison of computational condition and grid resolution. ‘+’ 

denotes the non-dimensional quantities normalised by the friction 

velocity and the kinematic viscosity. 

Numerical Procedure 

The flow is considered as incompressible and neglecting viscous 

dissipation and buoyancy effect, temperature is modelled as a 

passive scalar. The dimensionless temperature is defined as Θ = 

(‹Tw› - T)/Tr where Tr = qw/ρCpub is the reference temperature and 

‹Tw› denotes the wall temperature averaged in time and 

circumferencial direction. The governing equations for flow and 

passive scalar transport can be expressed in dimensionless forms, 

using mean velocity, ub (ratio of mean volumetric flow rate and 

pipe cross-sectional area) and diameter of the pipe, D as velocity 

and length scales for normalization: 
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where, N(u) represents the nonlinear advection terms, F is the 

forcing vector and the bulk Reynolds number, ReD is based on 

bulk velocity ub and pipe diameter. The Kármán number, Re is 

defined based on friction velocity u = (w/) and pipe radius R. 

The wall boundary condition is used in the same manner as 

suggested by Piller [4] that the wall temperature fluctuations are 

assumed to be zero and Θ = 0. The present DNS code is based on 

spectral element method (SEM) [1] capable to solve these 

equations with high spatial accuracy. 

Simulation Parameters 

The domain length (L/D = 2π) and resolution has been chosen in 

accordance with studies conducted by Chin et al. [2]. It is 

discretised by 15×8 spectral elements in the meridional 

semiplane, each consisting of 10th order Gauss-Lobatto-Legendre 

(GLL) tensor-product shape function and Fourier expansion 



applied with 128 planes of data in the azimuthal direction. A list 

of comparison of domain length, grid resolution and governing 

parameters (Re and Pr) among similar previous DNS [3-5] is 

presented in table 1. All these previous DNS employed either 

finite volume method (FVM) or finite difference method (FDM) 

as the discretisation technique. Turbulent flow is computed from 

an initial velocity and pressure field supplied by the fully 

developed flow state obtained by Chin et al. [2], while initial 

thermal field is given as the streamwise velocity component 

multiplied by the Prandtl number. Simulations are carried out 

until the ensemble average temperature at the centre of the pipe 

has converged to a constant value. Statistics are calculated over at 

least 70 turnover times for all value of Prandtl number considered 

here. 

 
Figure 2. Comparison of mean temperature distribution normalised by 

friction temperature with other DNS data  

 
Figure 3. Mean temperature profile with an emphasis on the conduction 

region  

Mean Temperature Profile 

The non-dimensionalised (by friction temperature, Tf = qw/ρCpu) 

mean temperature profile for various Prandtl numbers. is shown 

in figure 2. The current results are compared with the empirical 

equation proposed by Kader [6] and existing DNS data: Satake 

and Kunugi [3], Piller [4] and Redjem-Saad et al. [5]. Despite 

having slightly different Kármán numbers (see table 1), the 

overall agreement between present predictions and those obtained 

by Redjem-Saad is satisfactory. Moreover, the temperature 

profiles at Pr = 0.71 shows a similar trend for all existing DNS 

data. It is observed that both present and Piller’s computation 

have considered shorter pipe than other DNS simulations (see 

table 1). However, no significant effect of the computational 

length on mean temperature profile is found, which is consistent 

with the findings of Chin et al. [1], where they reported that 

mean velocity profile is relatively insensitive to pipe length for 

L/D ≥ 2π. The results agree well with the Kader’s correlation 

from the pipe wall to the edge of logarithmic layer for Pr < 0.71. 

At high Prandtl number (Pr ≥ 0.71), Kader’s correlation shows 

significant discrepancy with all of these DNS computations, 

mainly in the logarithmic region. 

A mean energy balance can be derived by time-averaging 

equation (2): 
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The three terms appearing in the mean heat equation (3), can be 

interpreted as molecular diffusion transport, turbulent transport, 

and streamwise mean advection. Mean temperature profiles are 

characterised by synergetic interaction of these terms, while heat 

transfer in turbulent flow is generally dominated by turbulent 

transport. For low Pr, the magnitude of the molecular diffusion 

term is always larger than the turbulent transport term. The 

conductive sublayer then appears to be enlarged and the 

logarithmic region disappears. As Prandtl number increases, it is 

expected that there will be larger temperature difference between 

the wall and the fluid at the pipe cross-section. This is clearly 

illustrated in figure 3 which shows the behaviour of the mean 

temperature profiles within the near wall region. All these 

profiles agree well with the linear profile, Pry ,   in the 

conductive sublayer (y+ ≤ 5). As expected, the conduction region 

penetrates more deeply into the core region with decreasing 

Prandtl number. 

 
Figure 4. Comparison of RMS values of fluctuating temperature 

distribution normalised by friction temperature with other DNS.  

Fluctuating Temperature Profile 

The root-mean-square temperature fluctuation normalised by the 

friction temperature is compared with previous results in figure 4 

for various Prandtl numbers. Data from the present simulations 

agree well with DNS data available in the open literature; the 

main distinctions of the peak value of temperature fluctuation are 

due to the differences of the Reynolds number and grid 

resolution. The computational pipe length should be sufficiently 

long in order to achieve convergence of second order thermal 

statistics, analogous to the statistics of the velocity field as 

suggested by Chin et al. [1]. At Pr = 0.026, Redjem-Saad’s 

simulation with coarse streamwise and azimuthal grid resolution 

also provides higher value of thermal turbulent intensity 

compared with the present result. Both the present and Piller’s 
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computations follows the same trend at Pr = 0.71, while Redjem-

Saad’s data is found to be always higher for Pr ≥ 0.4. Both in the 

present and other DNS data, the maximum temperature 

fluctuations are located at y+ ≈ 18 for Pr = 0.71. With the 

increase of Prandtl number, the peak temperature variance 

increases and moves closer to the wall. Kawamura et al. [7] in 

their DNS of turbulent heat transfer in channel flow claimed that 

the peak value is only a weakly dependent on Re for high Pr. 

Interestingly, for Pr = 1.0, the difference of the peak value 

between the present data and Redjem-Saad’s results at the same 

location (y+ ≈ 16) is very significant compare to other Prandtl 

numbers which seem to contradict the conclusion of Kawamura 

et al. [7]. We propose that this is due to the strong dependence of 

the peak value on Re as is widely accepted by many researchers 

who have computed turbulent pipe flow [2].  

 

Figure 5. Ratio of 
rms / Pr y  with an emphasis on the conduction 

region. 

The gradient of the fluctuating temperature Θ′ over the heated 

boundary satisfies the following equations 
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where 
wq is the average heat flux and

wq is its fluctuation. In the 

vicinity of the wall, it can be expanded usually in terms of y+ as 
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(5) 

According to the prediction of Redjem-Saad et al. [5], bθ would 

be independent of Pr if the Prandtl number is higher than a 

certain limiting value.  This is because for highly conductive 

fluid, the wall fluctuation q′w will tend to zero. Figure 5 shows 

the evolution of the rms temperature fluctuations which confirms 

the asymptotic behaviour Θ′+ ≈ bθPry+ as y+ → 0 to emphasize 

the near-wall behaviour. The value of coefficient bθ near the wall 

is estimated to be approximately 0.37 for Pr ≥ 0.71 which is 

slightly lower than the prediction of Redjem-Saad et al. [5] (bθ ≈ 

0.4). Moreover, when Prandtl number is very low (Pr = 0.026), 

the wall value decreases sharply which is also lower than 

Redjem-Saad’s value mainly due to the difference of Re and grid 

resolution. Although at low Pr, the general tendency of Reynolds 

number effect on peak turbulent thermal intensities is small, the 

coarse resolution used in Redjem-Saad’s simulation has a 

significant impact on the peak value (see Orlandi and Fatica [8] 

where a grid resolution study on turbulent pipe flow was 

conducted). 

Streamwise Turbulent Heat Fluxes 

The streamwise turbulent heat flux normalized by the friction 

velocity and temperature is shown in figure 6(a), for different 

Prandtl numbers. The overall agreement of the predicted 

streamwise turbulent heat flux with Redjem-Saad et al.[5] is 

satisfactory. The obvious discrepancy observed at the peak value 

may be attributed to Reynolds number as explained previously 

for rms of temperature fluctuations. The dependence of the peak 

value on the Reynolds number by comparing with Redjem-

Saad’s results is clearly visible at high Pr, while Kawamura et al. 

[7] in channel flow simulation observed the opposite behaviour. 

With the increase of Prandtl number, the conductive sublayer 

becomes thinner; the peak becomes higher and moves towards 

the wall. For Pr = 0.71, the location of the maximum of the 

streamwise turbulent heat flux is found at y+ ≈ 16. This value is 

located between the maximum of rms streamwise velocity 

fluctuations (y+ ≈ 14, not shown here) and the maximum of rms 

temperature fluctuation (y+ ≈ 18). Similar observation has been 

reported in other studies using DNS data. The locations of the 

peak for Pr = 0.2 and 1.0 are y+ ≈ 23 and 14, which are closer to 

Redjem-Saad et al. [5], but their peak point (y+ ≈ 57) for Pr = 

0.26 is quite different from the present peak location (y+ ≈ 48). 

Near the pipe centre, the streamwise heat flux does not vary with 

Pr if Pr ≥ 0.4, similar agreement is also found by Redjem-Saad et 

al. [5]. 

 

 
Figure 6. Streamwise turbulent heat flux: (a) comparison with other DNS 

and (b) the ratio of 
zu / Pr   .  

The ratio of 
zu / Pr   is plotted in figure 6(b) with emphasis on 

the near-wall region. As mentioned in Redjem-Saad et al. [5], 

using the expressions of the temperature and velocity 

fluctuations, streamwise heat flux can be expressed as: 

y
+

10
-1

10
0

10
1

10
20.0

0.1

0.2

0.3

0.4
Pr = 0.026
Pr = 0.1
Pr = 0.2
Pr = 0.4
Pr = 0.71
Pr = 1.0


'+ rm

s/
P

r.
y

+

y
+

0 50 100 150

0

1

2

3

4

5

6

7

8

Present

Satake and Kunugi [3]

Piller [4]

Redjem-Saad et al. [5]

u
z

' +


' +

Pr = 1.0, 0.71, 0.4, 0.2, 0.1, 0.026

y
+

10
0

10
1

10
210

-4

10
-3

10
-2

10
-1

10
0

10
1

Pr = 0.026

Pr = 0.1

Pr = 0.2

Pr = 0.4

Pr = 0.71

Pr = 1.0

0.12Pry
+2

u
z'+


'+
/P

r

(b) 

(a) 



 2 3

z z zu Pr bb y c c y ,        

   

(6) 

where the correlation coefficient 
zb b in the vicinity of the wall is 

independent of Pr for Pr ≥ 0.71. The value of 
zb b is about 0.12 

which is almost consistent with the Redjem-Saad’s value ( zb b  ≈ 

0.13). 

 

 
Figure 7. Radial turbulent heat flux: (a) comparison with other DNS and 

(b) the ratio of 
ru / Pr   . 

Wall-normal Turbulent Heat Fluxes 

The wall-normal turbulent heat flux is plotted in figure 7(a). Over 

the pipe cross-section, the wall-normal turbulent heat flux is 

smaller by an order of magnitude when compared to the 

streamwise turbulent heat flux. Moreover, the wall-normal heat 

flux reaches a maximum further away from the wall than the 

streamwise heat flux due to strong damping of the wall-normal 

velocity fluctuation, which has its maximum at y+ = 53 (not 

shown here). Similar to the streamwise heat flux distribution, the 

present DNS considerably under predicts the wall-normal heat 

flux than other DNS because of the low Re-value. In the vicinity 

of the wall, the conductive heat flux plays a dominant role, while 

the turbulent heat flux dominates in the core region. With the 

increase of the Prandtl number, the radial turbulent heat flux 

increases which is balanced by the decrease in the conductive 

heat flux. The peak of the wall-normal turbulent heat flux rises 

and shifts towards the wall, while due to higher Re as in Redjem-

Saad et al. [5], the peak shifts away from the wall for the same 

Pr. Other than Pr, the transverse curvature also affects the radial 

turbulent heat flux as observed in figure 7(b). The distribution of 

radial heat flux decreases from the location of the peak point to 

the pipe centre at zero value for all Prandtl numbers.  

Similar to the streamwise heat flux, the wall-normal heat flux can 

be expressed as: 
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which indicates asymptotic behaviour in the near-wall region as 

evident in figure 7(b). The wall value of the correlation 

coefficient 
rb b  is about 6.5×10-4 which is independent of all Pr 

except Pr = 0.026 and also in good agreement with the ones 

obtained by Redjem-Saad et al. [5] ( 470 10rbb .
  ). 

Conclusions 

The statistical results obtained from DNS of turbulent heat 

transfer in pipe flow are seen to be in good agreement with data 

available in the open literature. For low Prandtl number, the 

logarithmic regions are practically non-existent near the core of 

the pipe.  Future work will include the effect of Reynolds 

numbers (Reτ ≥ 500) for fluid having high Prandtl number, Pr ≥ 

O(1). This will possibly able to give a framework to establish 

scaling of the temperature profile in a turbulent pipe flow for a 

wide range of working fluids with different thermal 

characteristics. 
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