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Abstract 

In this paper the magneto hydrodynamic (MHD) slip flow over a 

permeable stretching surface has been evaluated in the presence 

of a chemical reaction. Slip flow comes about if the characteristic 

size of the flow regime is small or the flow pressure is very low. 

By using appropriate similarity variables, the fundamental 

equations of the boundary layer are transformed to ordinary 

differential equations containing the Schmidt number, 

nonlinearity velocity of the surface and magnetic parameter 

which for a fixed values of slip coefficient (K) at the boundary 

conditions, local similarity solution would be valid. The ordinary 

differential equations of the problem are solved numerically 

using an explicit Runge-Kutta (4, 5) formula, the Dormand-

Prince pair and shooting method. The velocity and concentration 

profiles in addition to the local skin-friction and the local 

Sherwood number for the various values of the involved 

parameters of the problem are presented and discussed in details. 

Introduction  

Microfluidics as a young research field plays a great role to 

develop control accuracy of small devices. In no-slip-flow, as a 

requirement of continuum physics, the flow velocity is zero at a 

solid-fluid interface. But in the existence of slip-flow, the flow 

velocity at the solid walls is nonzero [1]. Even if the separation of 

individual molecules is obvious at the nanoscales, it is still 

possible to explain the main transport phenomena in nanofluidic 

systems with a theory based on continuum and mean-field 

approaches [2, 3 and 4]. It is well known that flow past a 

permeable surface has practical applications especially in 

geophysical fluid dynamics. Examples of natural porous media 

are wood, beach sand, sandstone, limestone, the human lung and 

in small blood vessels. The magnetohydrodynamic (MHD) flow 

of a fluid in a micro/nanochannel is of interest in connection with 

certain problems of the movement of conductive physiological 

fluids, e.g., the blood, blood pump machines and with the need 

for theoretical research on the problem of the slip MHD flow 

along permeable surfaces. Thus, the micro-nano 

magnetohydrodynamic effects are recognized as a tool for 

controlling the micro-nanostructure of materials. Numerous 

investigations have been done analytically regarding to the slip 

flow regime. Martin and Boyd [5] have analyzed Blasius 

boundary layer problem with slip flow. Their results 

demonstrated that the boundary layer equations can be used to 

study flow at the MEMS scale and provide useful information to 

study the effects of rarefaction on the shear stress and structure of 

the flow. In another task [6] they have analyzed momentum and 

heat transfer in a laminar boundary layer with slip flow at 

constant wall temperature. Based on the boundary layer theory, 

non-equilibrium effects will cause a reduction in drag on airfoils. 

According to their studies of liquids over flat plate at constant 

wall temperature boundary conditions, there is no temperature 

jump.  Recently, Matthews and Hill [7] have studied the effect of 

replacing the standard no-slip boundary condition with a 

nonlinear Navier boundary condition for the boundary layer 

equations. In another task they have investigated Newtonian flow 

with nonlinear Navier boundary condition for three simple 

pressure-driven flows through a pipe, a channel and an annulus 

[8]. The axisymmetric flow of a Newtonian fluid due to a 

stretching sheet with partial slip boundary condition has been 

investigated by Ariel [9]. Yazdi et al. [10] have investigated 

friction and heat transfer in the slip flow boundary layer at 

constant heat flux boundary conditions. In another task [11] they 

have studied liquid fluid past embedded open parallel 

microchannels within the surface. Wang [12] has studied the 

viscous flow due to a stretching sheet with partial slip and 

suction. Recently Yazdi et al [13] have analyzed convective heat 

transfer of the slip liquid flow past horizontal surface within the 

porous media at constant heat flux boundary conditions. Their 

results suggest that slip liquid flow can successfully reduce wall 

friction through slip-flow boundary conditions in convective heat 

transfer problems and increase heat transfer rate. It has been 

found that suction makes a significant effect on the velocity 

adjacent to the wall in the presence of slip. On the topic of MHD 

flow modeling, the boundary-layer equation of flow over a 

nonlinearly stretching sheet in the presence of a chemical 

reaction and a magnetic field has been investigated by Kechil and 

Hashim [14]. Recently Fang et al [15] have studied analytically 

hydrodynamic boundary layer of slip MHD viscous flow over a 

stretching sheet. Their investigation shows the velocity and shear 

stress profiles are influenced by the slip, magnetic and mass 

transfer parameters. They have illustrated that wall drag force 

increases with the increase of magnetic parameter. There have 

been many theoretical models developed to describe slip flow 

along the surface. To the best of our knowledge, no investigation 

has been made yet to analyze the slip MHD flow over permeable 

stretching surface with chemical reaction. 

 

Mathematical formulation 

For modeling fluid transport in slip boundary layer, the 

assumptions made for the derivation of the full Navier–Stokes 



equations have been examined. These assumptions are the fluid is 

assumed to be a continuum, the fluid is Newtonian. In addition, 

the fluid can be assumed to be incompressible. We will study the 

2-D, steady, laminar flow in the presence of a transverse 

magnetic field with strength B(x) which is applied in the vertical 

direction, given by the special form.  
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where x is the coordinate along the plate measured from the 

leading edge and n is a constant. The magnetic Reynolds number 

is assumed small so that the induced magnetic field is neglected. 

The positive y-coordinate is measured normal to the x-axis in the 

outward direction towards the fluid. The corresponding velocity 

components in the x and y directions are u and v, respectively. 

The surface velocity is given by: 
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where u0 is a constant parameter related to the surface stretching 

speed. The concentration adjust to the surface would be Cw and 

the solubility of A in B and the concentration of A far away from 

the plate would be C∞. We assume that the reaction of a species 

A with B be the first order homogeneous chemical reaction with 

rate constant, κ. It is desired to analyse the system by a boundary 

layer method. It is assumed that the concentration of dissolved A 

is small enough and the related physical property D is constant in 

the fluid.The steady two-dimensional boundary layer equations 

for this problem, in the usual notation [16], are 
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The associated boundary conditions are 
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where ρ is the fluid density, σ is the electrical conductivity of the 

fluid, vw is the wall mass transfer velocity and us is the velocity 

slip which is assumed to be proportional to the local shear stress 

as follows [1]: 
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l is slip length as a proportional constant of the velocity slip. By 

using similarity transformation, the fundamental equations of the 

boundary layer are transformed to ordinary differential ones that 

are locally valid. Thus, the mathematical analysis of the problem 

can be simplified by introducing the following dimensionless 

coordinates: 

             

 






































CC

CC

f
n

n
fx

nu
v

x
v

nu
y

xu

u

u

u
f

w

n

n

n

w








1

1

2

)1(

2

)1(

2

1

0

2

1

0

0

     (8) 

It is helpful to introduce a slip coefficient using similarity 

variables: 
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where K is the slip coefficient defined for liquids by: 
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The fundamental partial differential equations (4) and (5) are 

transformed to ordinary differential equations substituting 

similarity variables (8) into Eqs. (4, 5) as follows: 
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with associated boundary conditions: 
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where fw, Sc, Re, γ and M show the strength of the mass transfer 

at the sheet, Schmidt number, Reynolds number, non-

dimensional chemical reaction parameter and magnetic parameter 

respectively: 
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fw is negative for  mass injection and positive at the presence of 

suction along the surface. It is obvious that the nonlinearity 

parameter of surface velocity, (n) and slip coefficient (K) which 

exists in the boundary condition tends to break down the 

similarity solution. Consequently the local similarity solution of 

the problem for the fixed values of the coordinate along the plate 

(x) and nonlinearity parameter (n) would be obtained properly for 

the momentum and concentration equations (11), (12). Therefore 

by using specified nonlinear parameter (n) in the specific location 

(x) on the surface, problem can be solved. These Nonlinear 

differential Eqs (11, 12) are solved numerically by using an 

explicit Runge-Kutta (4, 5) formula, the Dormand-Prince pair 

and shooting method subject to the slip-flow boundary conditions 

(13) which is locally valid. After solving this slip-flow problem 

numerically, the wall shear stress and the Sherwood number 

exhibits a dependence on the slip coefficient as follows: 
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Result and Discussion  

Table .1 shows Comparison of the velocity gradient at the wall 

f”(0) between the present code results and that obtained before. 

This table indicates that our results are compatible with the 

previous works of Cortell [17] and Fang [15]. It’s obvious that 
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accelerating velocity tends to increase the skin friction at the 

wall. On the other hand, the slip coefficient tends to decrease 

wall shear stress. 

n fw K M 
Cortell [17] 

(2007) 

Fang [15] 

(2009) 

Presented 

Results 

       

0 0 0 0 0.6275  0.6275 

0.2    0.7667  0.7667 

0.5    0.8895  0.8896 

0.75    0.9538  0.9540 

       

1 0 0 0.5  1.1180 1.1180 

  0.5   0.6495 0.6495 

  1   0.4691 0.4691 

 

Table 1. Comparison of the velocity gradient at the wall f”(0) between the 

present code results and that obtained before 

Fig.1 and Fig.2 show variation of the velocity profiles and 

velocity gradient respectively as a function of η for various 

values of magnetic parameter (M) at fw=0.2, n=0.5 and K=0.5. 

Fig.1 indicates that the Lorentz force changes the velocity profile 

such that the velocity distribution decreases with increasing M. 

At the presence of the Lorenz force, the skin friction coefficient 

increases with the increase in magnetic parameter.  
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Figure 1. Velocity distribution as a function of η for various values of M 

at fw=0.2, n=0.5, K=0.5 
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Figure 2. Velocity gradient as a function of η for various values of M at 

fw=0.2, n=0.5, K=0.5 

Fig.3 shows variation of the velocity gradient as function of η at 

various values of suction/injection. It’s clear that the wall shear 

stress would be increased with the application of suction whereas 

injection tends to decrease wall shear stress. It is understandable 

that the velocity of the fluid on the wall increases by increasing 

suction parameter along the surface and decreases by injection at 

specific slip coefficient.  
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Figure 3. Velocity gradient as a function of η for various values of fw at 

M=0.4, n=0.5, K=0.5 

Fig.4 and Fig.5 illustrate variation of the concentration profiles 

and concentration gradient respectively as a function of η for 

various values of Schmidt number (Sc) at n=0, fw=0.2, γ=0.5, 

K=0.5, Re=1, M=0.1. Schmidt number tends to increase 

Sherwood number by increasing concentration gradient. The 

reason for this trend is that the concentration boundary layer 

becomes thin for large Sc number. 
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Figure 4. Concentration profiles as a function of η for various values of 

Schmidt number (Sc) at n=0, fw=0.2, γ=0.5, K=0.5, Re=1, M=0.1 
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Figure 5. Concentration gradient as a function of η for various values of 

Schmidt number (Sc) at fw=0.2, γ=0.5, K=0.5, M=0.1 



 

Fig.6 and Fig.7 illustrates variation of the concentration profiles 

and concentration gradient respectively as a function of η for 

various values of slip coefficient (K) at n=0, fw=0.2, γ=0.5, Sc=1, 

Re=1, M=0.1. Increasing slip coefficient increases the velocity of 

the fluid on top of the surface. Hence it increases concentration 

profile and decreases concentration gradient at the surface (η=0) 

respectively.  
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Figure 6.Concentration profiles as a function of η for various values of 

slip coefficient (K) at fw=0.2, γ=0.5, Sc=1, M=0.1 
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Figure 7.Concentration gradient as a function of η for various values of 

slip coefficient (K) at fw=0.2, γ=0.5, Sc=1, M=0.1 

 

Conclusions 

The problem of the MHD slip flow over nonlinear permeable 

stretching surface in the presence of chemical reaction is 

evaluated analytically using a similarity solution. The slip 

boundary condition along the surface is considered. The results 

suggest that in the presence of the Lorenz force, the skin friction 

coefficient increases with the increase in the magnetic parameter. 

It has been found that Schmidt number tends to increase the 

Sherwood number whereas the slip coefficient decreases the 

concentration gradient at the surface. 
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