17th Australasian Fluid Mechanics Conference
Auckland, New Zealand
5-9 December 2010

Modelling of Tracer Fluxes in Complex Canopies
by Means of Conformal Mapping and Multifractal Formalism

A. Skvortsov and A. Walker

HPP Division
Defence Science and Technology Organisation
506 Lorimer Street, Fishermans Bend, Vic 3207, Australia

Abstract

We present a simple physics based model of pollutant con-
centration and associated fluxes in a fractal canopy. The
model provides a closed system of equations for approximgati
mean-field concentration, and spatial flux distributionhivit

dispersion (see [4, 2, 5, 9] and references therein).

Mean-field model

In this section we present a simple mean-field model for passi
tracers dispersed over a fractal canopy. The mean-field Imode

the canopy. Our approach is based on methods of theoreti- implies that we are only interested in a coarse-grainedrigesc

cal physics (conformal mapping and multifractal formaljsm
that have recently emerged [2] in application to the probtém
modelling tracer dispersion. For a rough boundary with amgiv
fractal spectrum, the model provides a method for predictin
the mean concentration and the probability distributiooaf-
centration fluxes, which influence tracer deposition. We als
develop a simple, but scientifically rigorous, algorithmgemn-
erate realisations of flux distributions within complex opies.

tion of the tracer field. In particular, the distribution afre
centration and associated flux, averaged over a spatial tl
exceeds that of the canopy (height, correlation length).

A rigorous derivation of this model is outside the scope & th
paper. Here we present a phenomenological approach leading
to simple analytical expressions that capture the maircieffe
tracer dispersion in this case. This approach includes plicéx

The proposed framework can be used as a valuable performance dependence of the vertical concentration profile on thetdtac

check of more complicated CFD models, or as a part of an in-
tegrated framework for the simulation and mitigation of -haz
ardous events for military clients and first responders. dfgeh
that after further validation, the proposed framework dolog
used to improve model performance in situations when numer-
ous “what-if” scenarios are to be run within a short timefeam

Introduction

The dispersive motion of tracer particles near irregulaerin
faces plays a crucial role in various transport phenomema-in
ture and technical applications. It has been traditioraligpic

of significant interest in ecology, meteorology and indastry-
drodynamics, and can be used to model effects related to-poll
tant transport, turbulent dispersion, chemical reactodsraix-

ing devices. There is a vast amount of literature on thisesipj
[14, 17, 6]. Critically, in all of these systems, interfdatan-
finement strongly influences the dispersion of tracer desic
Comprehensive study of this phenomena is a challenging task
even for advanced CFD models. Whilst the latter are able to
accurately calculate tracer concentration at the meshgan-
alytical models can be used to gain valuable statisticad s

into phenomena which are important for model validation, in
terpretation and possible generalisation.

This necessitates the development of analytically tréatset
scientifically sound, models based on clear physics priesip
to describe the dispersion of tracer particles over irrgsiir-
faces. In this work, the irregular boundaries of interestileix
fractal properties, which can result in the surface beinggho
or intermittent. Such models are desirable in order to ptomp
estimate the effect of interface morphology on a particeta-
nario of tracer transport.

In this current paper we extend our previous results [16] and

dimension of the canopy.

In two-dimensions tracer dispersion, subject to steady flast
a flat boundary, is described by the well-known advection-
diffusion equation (ADE) [14]
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wheref is the mean tracer concentratigrs the vertical height,
X is the downstream distancél (y), D(y) are functions which
describe velocity and diffusivity respectively and can bedm
elled by power-law profiles:

Equation 1 can be reduced to an ODE with a self-similar solu-
tion [14, 1]. For a point source locatedxat 0,y = H, whereH

is the elevation of the source, the solution of this equatiam

be described by a Green’s function whiclsteetch-exponential
asymptotic.
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where

g=2+m-n, 4

In these equationgjy gives the vertical scale of the velocity

present a mathematical model of a tracer plume generated by gradient, o is a constant derived fromi, Do andyo. Fur-
a steady point source above a fractal canopy. For the sake of {hermore g, = &(H,x). By employing the method of reflec-

simplicity, we restrict our consideration to the case of two

tions we can construct a solution for the absorbing boundary

dimensional steady flow. Our approach is based on methods g _ Gz &,) — G(&, &), that is,d = 0 at the boundary = 0.

of theoretical physics, conformal mapping and multifrafie:
malism, that have recently been applied to the problem oétra

This implies that the in general case, for all valueset n, the
flux near the boundary can be non-smooth and scales as



00

(4-2) [ y(m-n)
oy DYDY £k

Q)

Our approach is to exploit the “non-smoothness” of the model
at the boundary. The roughness induced by a fractal canapy ca
be compensated for by imposing additional constraints en th

free parametersn andn.

Introduction of a fractal canopy requires modification o flat
boundary solution of equation (3), which is done by follogvin
the physics-based reasoning of Boffetta [4]. Very closehto t
boundary, tracer flux is purely diffusive because the adpct
term in (1) is negligible. Such a system will obey the scaling
law for the diffusive transport near a fractal boundary [8].
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whered; is the fractal dimension of the bounddry.

If we assume that near the fractal boundary the general-struc
ture of stretch-exponentiasolution (3) still holds, we should
be able to capture the “fractal-boundary” effect by the danp
modification of exponeng (for non-fractal rough surfaces see
[16]). In other words, we should be able to introduce vagabl
exponenty(y) that matches limiting values of egs. (3) and (6)
(far away and close to the boundary) and reproduces theatorre
scaling properties of the flux. These limiting conditions ttee
functionq(y) can be deduced from equations (4), (5) and (6).
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Based on these conditions we can propose the following param
eterisation:

a+y/ls Jo
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This representation provides smooth interpolation betvie®
limiting values. The parametey is the length scale at which
diffusing behaviour of tracer dominates over advectiorcatt
be estimated from power-law profiles (2), lso~ D(l..) /U (1)
and:
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The parametePe= vyH /Do > 1 is the Peclet number of the
flow and it is assumed to be large (heryge> |..).

Egs.(3) and (9) provide closed analytical expressions Her t
mean-field theory of tracer particles dispersed by turkilew
above the fractal canopy. It explicitly takes into accour t
velocity and diffusivity profiles of the turbulent flow (pame-
tersm, n,Vvp, Dp) as well as the fractal properties of the boundary
(parameteds).

1We assume the boundary to be a monofractal, so we need only
one parameter to characterize its fractal dimension. Fdtifragtal
canopies we need to average final expressions over mutsifrapec-
trum

It is worth noting noting that the “variable exponent” apach

(9) can also be used as the first approximation in any other
stretch-exponential solution of ADE (1), for example, tlee r
flecting canopy of [16]. It can also provide a simple, butl stil
physically rigorous, parameterisation of the effect of fitee-

tal canopy. Some examples of these solutions are presented i
fig. 1. These profiles resemble recent experimental obsengat
[16, 19].

It is worth noting that for the so-called conjugate profile
1/D(y) OdU(y)/dy, son=1—m, 0w = 1+2m [14] and val-
uesq(0) andgy are rather close to one another (sincg 1 and

df =~ 2), hencea~ 1in (9).

y

Figure 1: Vertical distribution of tracer concentration fbree
different fractal dimensions

A fine-grain model of tracer fluxes within a fractal canopy

Let us now establish an analytical framework for physicselola
model of the tracer flux distribution within a complex canopy
This model provides a mechanism for calculation of tracer de
positions, since the latter is an integral of fluxes. To mabel
intermediate tracer fluxes within the fractal canopy we need
resolve the tracer distribution on small scales, that isallen
than the canopy scale. In order to enable analytical pregres
we employ ideas of conformal invariance and multifractai fo
malism of the advection diffusion equation [2, 5, 4]. The key
element of our modelling framework recently explored instho
works relates to the conformal invariance of ADE (1), prexdd
that velocityU can be described by means of potential (i.e.
U = 0¢). This implies that the powerful analytical methods
of harmonic functions can be applied to the study of complex
fluxes associated with ADE. In the current paper we demon-
strate this approach for the simplest flow with a constaniesal
of U.

The intermittent structure of fluxes induced by the fractal
canopy can be understood by considering similar resulthéor
Laplacian transport [4, 9, 5, 3, 18]. The latter can be eatgly
duced from the solution of the Laplace equation in polar dor
nates, and can be interpreted in terms oftireding angleof the
boundary (the angle tangential to the boundary profile) [8].9
Effectively, local changes in winding angle result in a Id€iax
anomaly” that can be estimated&5~ €',r = 1— d@/Ttwhere

€ is the linear size of the area of the deformation agpds the
change of the winding angle caused by this deformation (whic
can be either positive or negative). As+» 0 any sharp changes
in the winding angle will result in either singularities oe-z
roes. The winding-angle reasoning provides a valuablétiveiu
method for finding critical locations of the tracer distrioun in
complex canopies.

We now provide a more rigorous framework to describe tracer
flux distribution by means of conformal mapping. The confor-



mal invariance of the ADE implies that its solutions (cortcan

tion and associated fluxes) in any complex planar domain can
be constructed from a solution in a simpler domain. We make
use of a formal substitutio®(z) — 6(w), wherez= x+ iy and

w = F(2) is a conformal mapping to the new domain. For a
long time this method has been applied to harmonic functions
and bi-harmonic functions [18], but results [2, 5, 3] extértd

the domain of ADE.

According to [2], [5], under a conformal transformation cen-
tration fluxes along and across the boundary are transfoamed

3= |F'| 3w, 11)
whereF’ = dF(z)/dz J, and J, are fluxes calculated in the
original and the transformed domaify(J),J(J) are normal
and tangential components of those fluxes.

Relation (11) allows an important conclusion to be drawn
regarding the spatial structure of fluxes within the complex
canopy. Let us assume that in the simple (non transformed) do
main, the fluxJ, has no singularities. This means that any sin-
gularities of flux in the transformed domain can be introduce
only by the derivative of the mapping functiédh Given that

F is fully determined by the geometry of the boundary of the
transformed domain, it is possible to produce general isolsit
that can be used for any values of the dynamic parameters, in-
cluding mean velocity and diffusivity.

To illustrate this point it is instructive to consider a geale
model of a piece-wise boundary (see Fig 2). This model can be
considered as a first approximation for any shape of the ganop
with accuracy that can be refined as necessary. The conformal
mapping of this boundary to the half space is given by the-well
known Schwarz-Christoffel transformation [13, 15].

F(z):A/OZﬁ(xfai)“‘dx+B (12)
1
for which F' is given by
F'(2) = A[](x—a)¥, (13)

1

whereA andB are constantsy corresponds to the pre-image
locations of the vertices in thedomain, andy = @/, such
that@ is the exterior angle measured between adjacent vertices
in the transformed domain. In particular note that < p < 1.

Egs. (11), (13) express the above mentioned property tteat in
mittent structure of the concentration flux in rough (piedee)
canopies can be presented as a spatial distribution of “anom
lies” (zeros foru > 0 and singularities fop < 0). It is important

to stress that because of the constraifit< p < 1 these singu-
larities are integrable, so the flux integral (or averagex ffler
unit of boundaries) never diverges. This is a manifestaifdhe
fact that the total flux is preserved by conformal transfarama
[2, 5], which is known as the Makarov theorem [9, 8]).

In order to have all terms in (11) defined we need to have an an-
alytical solution for the flux distribution in the non-trdnemed
domain. The examples considered in the literature are flux
between two concentric circles with axial flow when one cir-
cle is “tracer-absorbing”§ = 0) and another one is “tracer-
emitting”(® = By = cons), see [11], [5]. The tracer flux be-
tween two parallel plates with constant flow is a particukse

of the above configuration. Another partially relevant case

(which still enables some analytical progress) is the gmiubr

the point-source above the flat boundary in the constant flow
(i.,e.m=n=0in (2)). This solution can be written in the form
(see detalils in [5])

G(z,20) = Ko(K|z— 2o]) exp(kx), (14)

whereKg is a modified Bessel function of the second kind and
K =Up/Dg. For the absorbing boundaries & 0), the required
solution again can be written by employing the method of im-
ages, so we arrive at

6(27 ZO) = GO(27 ZO) - GO(27 26)7 (15)

wherez; = (X—Xo,Y+Yo) is the position of imaginary source.
From here we can calculate flidx= 06/dzand plug it in (11).

We would like to emphasize again that intermittent distribu
tion of the flux is the result of the geometrical propertiesheaf
boundary (the first term in (11)) and will emerge for any ini-
tial distribution of flux (the second term in (11)). Emplogin
any complex initial distribution of flux results in unnecass
analytical and numerical complications, while the maimstr
ture of flux anomalies remain unchanged. In order to capture
the main effect of spatial intermittency of concentratianxés

it is reasonable to start with a very simple initial model flax
distribution (for instance taking, to be a constant), but with a
more realistic model of canopy.

As an example of application of the proposed framework we
considered the effect of a complex boundary based on the Sier
pinski arrowhead fractal (see Fig 2). We employ the Schwarz-
Christoffel Toolbox for MATLAB [7] to perform the necessary
calculations. Critically, note the correlation betweer tfeo-
metric shape of the boundary and the flux anomalies that are
introduced.
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Figure 2: Geometric flow characteristics near a fractaleserf
Left: the streamlines and equipotential lines; Right: the,fU,
introduced by the conformal mapping on the surface.

Extending the proposed framework to take random boundaries
into consideration is straightforward. This can be doneityy s
ply averaging the final expressions over given statisticsttid
butions (PDF)p(a) andp() in (13). This amounts to the “en-
semble average” functiofF’) in (11). Sometimes properties
of this distribution can be deduced from the physics-based ¢
siderations. One example of this constraint, already roeat,

is total flux conservation (since flux is preserved by confarm
mapping). The total flux conservation implies that ensemble
averaged mean functioff’(z)) should provide the same mean
value for the total flux. Another example {g;) = 0 in the case

of a perfectly flat canopy, ofy;) = @y /T = constfor a canopy



with a constant slope. The important point is that functions
p(a) and p(K;) can be deduced only from the canopy proper-
ties, but are not inter-related to the advection-diffugiosblem.

For given PDF9(a) andp(p) we can use (13) to generate real-
isations of the associated flux distribution. The abilitgemer-
ate high fidelity distributions of tracer fluxes is a valuatéga-
bility of the proposed framework, with applications in theldi

of hazard simulation. Applications of this concept are ipart
larly important for validation of data fusion algorithm®o(sce
backtracking, optimal sensor placement and harmful exgosu
prediction) [10], which are often built on numerous rediizas

of intermittent concentration fields. A more comprehensive
study of this topic will be presented in a separate paper.

As we have discussed above there is an intimate connection be
tween the statistics of spatial flux distribution within tbem-

plex canopy and the statistics of the winding angle withia th
same canopy. This connection is especially useful in the chs
multifractal canopies for which the PDF of the winding angle
can be derived from a multifractal spectruifo) by means of
well-known formalism [4, 9, 12]. This leads to the following
PDF for the flux distribution (for details see [4]).

p(J):%éf("), O((J):(Iogé)*llog(%), 5= M (16)

X I

whereC is a normalization facto is the downstream distance,
J is the averaged flux calculated from the mean-field approxi-
mation (3), (9).

In can be shown that for a simple approximation of shape of
function f(a) (i.e. linear or parabolic), PDIp(J) can be re-
duced to a distribution with the power-law tails that areyver
sensitive to the parameters 6fa) (maximum, mean, width
etc). These results will be presented elsewhere. Examples o
this PDF are depicted in fig 3.

J

Figure 3: Example of PDF for cross-boundary flux for three
different fractal spectra

Conclusions

We have presented a simple physics based model of the concen-

tration and associated fluxes in the fractal canopy. The mode
provides a closed system of equations for the mean-field ap-
proximation as well as for the spatial flux distribution viith

the canopy. The proposed framework explicitly relates prop
erties of the tracer transport (mean turbulent velocity difid
fusivity) to the morphology of the underlying fractal suwé
(fractal spectrum). It can be used as a valuable performance
check of more complicated CFD models, or as a part of an in-
tegrated framework for the simulation and mitigation of -haz
ardous events for military clients and first responders. dfgeh
that after further validation, the proposed framework cem p
vide a valuable trade-off between the model performance and

its scientific rigour in situations where numerous “whétsite-
narios are to be run within a short timeframe.
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