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Abstract

We present a simple physics based model of pollutant con-
centration and associated fluxes in a fractal canopy. The
model provides a closed system of equations for approximating
mean-field concentration, and spatial flux distribution within
the canopy. Our approach is based on methods of theoreti-
cal physics (conformal mapping and multifractal formalism),
that have recently emerged [2] in application to the problemof
modelling tracer dispersion. For a rough boundary with a given
fractal spectrum, the model provides a method for predicting
the mean concentration and the probability distribution ofcon-
centration fluxes, which influence tracer deposition. We also
develop a simple, but scientifically rigorous, algorithm togen-
erate realisations of flux distributions within complex canopies.
The proposed framework can be used as a valuable performance
check of more complicated CFD models, or as a part of an in-
tegrated framework for the simulation and mitigation of haz-
ardous events for military clients and first responders. We hope
that after further validation, the proposed framework could be
used to improve model performance in situations when numer-
ous “what-if” scenarios are to be run within a short timeframe.

Introduction

The dispersive motion of tracer particles near irregular inter-
faces plays a crucial role in various transport phenomena inna-
ture and technical applications. It has been traditionallya topic
of significant interest in ecology, meteorology and industrial hy-
drodynamics, and can be used to model effects related to pollu-
tant transport, turbulent dispersion, chemical reactors and mix-
ing devices. There is a vast amount of literature on this subject,
[14, 17, 6]. Critically, in all of these systems, interfacial con-
finement strongly influences the dispersion of tracer particles.
Comprehensive study of this phenomena is a challenging task,
even for advanced CFD models. Whilst the latter are able to
accurately calculate tracer concentration at the mesh points, an-
alytical models can be used to gain valuable statistical insights
into phenomena which are important for model validation, in-
terpretation and possible generalisation.

This necessitates the development of analytically treatable, yet
scientifically sound, models based on clear physics principles
to describe the dispersion of tracer particles over irregular sur-
faces. In this work, the irregular boundaries of interest exhibit
fractal properties, which can result in the surface being rough
or intermittent. Such models are desirable in order to promptly
estimate the effect of interface morphology on a particularsce-
nario of tracer transport.

In this current paper we extend our previous results [16] and
present a mathematical model of a tracer plume generated by
a steady point source above a fractal canopy. For the sake of
simplicity, we restrict our consideration to the case of two-
dimensional steady flow. Our approach is based on methods
of theoretical physics, conformal mapping and multifractal for-
malism, that have recently been applied to the problem of tracer

dispersion (see [4, 2, 5, 9] and references therein).

Mean-field model

In this section we present a simple mean-field model for passive
tracers dispersed over a fractal canopy. The mean-field model
implies that we are only interested in a coarse-grained descrip-
tion of the tracer field. In particular, the distribution of con-
centration and associated flux, averaged over a spatial scale that
exceeds that of the canopy (height, correlation length).

A rigorous derivation of this model is outside the scope of this
paper. Here we present a phenomenological approach leading
to simple analytical expressions that capture the main effect of
tracer dispersion in this case. This approach includes an explicit
dependence of the vertical concentration profile on the fractal
dimension of the canopy.

In two-dimensions tracer dispersion, subject to steady flowpast
a flat boundary, is described by the well-known advection-
diffusion equation (ADE) [14]
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whereθ is the mean tracer concentration,y is the vertical height,
x is the downstream distance.U(y), D(y) are functions which
describe velocity and diffusivity respectively and can be mod-
elled by power-law profiles:
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Equation 1 can be reduced to an ODE with a self-similar solu-
tion [14, 1]. For a point source located atx= 0, y=H, whereH
is the elevation of the source, the solution of this equationcan
be described by a Green’s function which isstretch-exponential
asymptotic.

G(ξ,ξ0) ∝ exp[−σ(ξ−ξ0)
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where

q= 2+m−n, (4)

In these equations,y0 gives the vertical scale of the velocity
gradient,σ is a constant derived fromv0, D0 and y0. Fur-
thermore,ξ0 = ξ(H,x). By employing the method of reflec-
tions we can construct a solution for the absorbing boundary:
θ = G(ξ,ξ0)−G(ξ,−ξ0), that is,θ = 0 at the boundaryy= 0.
This implies that the in general case, for all values ofm 6= n, the
flux near the boundary can be non-smooth and scales as



∂θ
∂y

∝ y(q−2) ∝ y(m−n), ξ ≫ ξ0 (5)

Our approach is to exploit the “non-smoothness” of the model
at the boundary. The roughness induced by a fractal canopy can
be compensated for by imposing additional constraints on the
free parameters,m andn.

Introduction of a fractal canopy requires modification of the flat
boundary solution of equation (3), which is done by following
the physics-based reasoning of Boffetta [4]. Very close to the
boundary, tracer flux is purely diffusive because the advection
term in (1) is negligible. Such a system will obey the scaling
law for the diffusive transport near a fractal boundary [8].

∂θ
∂y

∝ y(2−df ), (6)

wheredf is the fractal dimension of the boundary.1

If we assume that near the fractal boundary the general struc-
ture of stretch-exponentialsolution (3) still holds, we should
be able to capture the “fractal-boundary” effect by the simple
modification of exponentq (for non-fractal rough surfaces see
[16]). In other words, we should be able to introduce variable
exponentq(y) that matches limiting values of eqs. (3) and (6)
(far away and close to the boundary) and reproduces the correct
scaling properties of the flux. These limiting conditions for the
functionq(y) can be deduced from equations (4), (5) and (6).

q(y)→ q0 = 4−df , y→ 0, (7)

q(y)→ q∞ = 2+m−n, y→ ∞. (8)

Based on these conditions we can propose the following param-
eterisation:

q(y) = q∞
a+y/l∗
1+y/l∗

. a=
q0

q∞
, (9)

This representation provides smooth interpolation between two
limiting values. The parameterl∗ is the length scale at which
diffusing behaviour of tracer dominates over advection. Itcan
be estimated from power-law profiles (2), sol∗ ∼ D(l∗)/U(l∗)
and:

l∗ ≈ y0

(

1
Pe

)η
, η =

1
1+m−n

(10)

The parameterPe= v0H/D0 ≫ 1 is the Peclet number of the
flow and it is assumed to be large (hencey0 ≫ l∗).

Eqs.(3) and (9) provide closed analytical expressions for the
mean-field theory of tracer particles dispersed by turbulent flow
above the fractal canopy. It explicitly takes into account the
velocity and diffusivity profiles of the turbulent flow (parame-
tersm,n,v0,D0) as well as the fractal properties of the boundary
(parameterdf ).

1We assume the boundary to be a monofractal, so we need only
one parameter to characterize its fractal dimension. For multifractal
canopies we need to average final expressions over multifractal spec-
trum

It is worth noting noting that the “variable exponent” approach
(9) can also be used as the first approximation in any other
stretch-exponential solution of ADE (1), for example, the re-
flecting canopy of [16]. It can also provide a simple, but still
physically rigorous, parameterisation of the effect of thefrac-
tal canopy. Some examples of these solutions are presented in
fig. 1. These profiles resemble recent experimental observations
[16, 19].

It is worth noting that for the so-called conjugate profile
1/D(y) ∝ dU(y)/dy, son= 1−m, q∞ = 1+2m [14] and val-
uesq(0) andq∞ are rather close to one another (sincem≤ 1 and
df ≈ 2), hencea≈ 1 in (9).
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Figure 1: Vertical distribution of tracer concentration for three
different fractal dimensions

A fine-grain model of tracer fluxes within a fractal canopy

Let us now establish an analytical framework for physics-based
model of the tracer flux distribution within a complex canopy.
This model provides a mechanism for calculation of tracer de-
positions, since the latter is an integral of fluxes. To modelthe
intermediate tracer fluxes within the fractal canopy we needto
resolve the tracer distribution on small scales, that is, smaller
than the canopy scale. In order to enable analytical progress
we employ ideas of conformal invariance and multifractal for-
malism of the advection diffusion equation [2, 5, 4]. The key
element of our modelling framework recently explored in those
works relates to the conformal invariance of ADE (1), provided
that velocityU can be described by means of potential (i.e.
U = ∇ϕ). This implies that the powerful analytical methods
of harmonic functions can be applied to the study of complex
fluxes associated with ADE. In the current paper we demon-
strate this approach for the simplest flow with a constant value
of U .

The intermittent structure of fluxes induced by the fractal
canopy can be understood by considering similar results forthe
Laplacian transport [4, 9, 5, 3, 18]. The latter can be easilyde-
duced from the solution of the Laplace equation in polar coordi-
nates, and can be interpreted in terms of thewinding angleof the
boundary (the angle tangential to the boundary profile) [4, 9, 5].
Effectively, local changes in winding angle result in a local “flux
anomaly” that can be estimated asδJ ∼ εr , r = 1−δφ/π where
ε is the linear size of the area of the deformation andδφ is the
change of the winding angle caused by this deformation (which
can be either positive or negative). Asε → 0 any sharp changes
in the winding angle will result in either singularities or ze-
roes. The winding-angle reasoning provides a valuable intuitive
method for finding critical locations of the tracer distribution in
complex canopies.

We now provide a more rigorous framework to describe tracer
flux distribution by means of conformal mapping. The confor-



mal invariance of the ADE implies that its solutions (concentra-
tion and associated fluxes) in any complex planar domain can
be constructed from a solution in a simpler domain. We make
use of a formal substitutionθ(z)→ θ(w), wherez= x+ iy and
w = F(z) is a conformal mapping to the new domain. For a
long time this method has been applied to harmonic functions
and bi-harmonic functions [18], but results [2, 5, 3] extendit to
the domain of ADE.

According to [2], [5], under a conformal transformation concen-
tration fluxes along and across the boundary are transformedas

Jz = |F ′|Jw, (11)

whereF ′ = dF(z)/dz, Jz and Jw are fluxes calculated in the
original and the transformed domain,ℜ(J),ℑ(J) are normal
and tangential components of those fluxes.

Relation (11) allows an important conclusion to be drawn
regarding the spatial structure of fluxes within the complex
canopy. Let us assume that in the simple (non transformed) do-
main, the fluxJw has no singularities. This means that any sin-
gularities of flux in the transformed domain can be introduced
only by the derivative of the mapping functionF . Given that
F is fully determined by the geometry of the boundary of the
transformed domain, it is possible to produce general solutions
that can be used for any values of the dynamic parameters, in-
cluding mean velocity and diffusivity.

To illustrate this point it is instructive to consider a general
model of a piece-wise boundary (see Fig 2). This model can be
considered as a first approximation for any shape of the canopy,
with accuracy that can be refined as necessary. The conformal
mapping of this boundary to the half space is given by the well-
known Schwarz-Christoffel transformation [13, 15].

F(z) = A
∫ z

0

n

∏
1
(x−ai)

µi dx+B (12)

for which F ′ is given by

F ′(z) = A
n

∏
1
(x−ai)

µi , (13)

whereA andB are constants,ai corresponds to the pre-image
locations of the vertices in thez domain, andµi = φi/π, such
thatφi is the exterior angle measured between adjacent vertices
in the transformed domain. In particular note that−1≤ µ≤ 1.

Eqs. (11), (13) express the above mentioned property that inter-
mittent structure of the concentration flux in rough (piece-wise)
canopies can be presented as a spatial distribution of “anoma-
lies” (zeros forµ≥ 0 and singularities forµ≤ 0). It is important
to stress that because of the constraint−1≤ µ≤ 1 these singu-
larities are integrable, so the flux integral (or averaged flux per
unit of boundaries) never diverges. This is a manifestationof the
fact that the total flux is preserved by conformal transformation
[2, 5], which is known as the Makarov theorem [9, 8]).

In order to have all terms in (11) defined we need to have an an-
alytical solution for the flux distribution in the non-transformed
domain. The examples considered in the literature are flux
between two concentric circles with axial flow when one cir-
cle is “tracer-absorbing” (θ = 0) and another one is “tracer-
emitting”(θ = θ0 = const), see [11], [5]. The tracer flux be-
tween two parallel plates with constant flow is a particular case
of the above configuration. Another partially relevant case

(which still enables some analytical progress) is the solution for
the point-source above the flat boundary in the constant flow
(i.e. m= n= 0 in (2)). This solution can be written in the form
(see details in [5])

G(z,z0) = K0(κ|z−z0|)exp(κx), (14)

whereK0 is a modified Bessel function of the second kind and
κ =U0/D0. For the absorbing boundaries (G= 0), the required
solution again can be written by employing the method of im-
ages, so we arrive at

θ(z,z0) = G0(z,z0)−G0(z,z
∗
0), (15)

wherez∗0 = (x−x0,y+y0) is the position of imaginary source.
From here we can calculate fluxJ = ∂θ/∂zand plug it in (11).

We would like to emphasize again that intermittent distribu-
tion of the flux is the result of the geometrical properties ofthe
boundary (the first term in (11)) and will emerge for any ini-
tial distribution of flux (the second term in (11)). Employing
any complex initial distribution of flux results in unnecessary
analytical and numerical complications, while the main struc-
ture of flux anomalies remain unchanged. In order to capture
the main effect of spatial intermittency of concentration fluxes
it is reasonable to start with a very simple initial model forflux
distribution (for instance takingJz to be a constant), but with a
more realistic model of canopy.

As an example of application of the proposed framework we
considered the effect of a complex boundary based on the Sier-
pinski arrowhead fractal (see Fig 2). We employ the Schwarz-
Christoffel Toolbox for MATLAB [7] to perform the necessary
calculations. Critically, note the correlation between the geo-
metric shape of the boundary and the flux anomalies that are
introduced.

Figure 2: Geometric flow characteristics near a fractal surface.
Left: the streamlines and equipotential lines; Right: the flux, J,
introduced by the conformal mapping on the surface.

Extending the proposed framework to take random boundaries
into consideration is straightforward. This can be done by sim-
ply averaging the final expressions over given statistical distri-
butions (PDF)p(ai) andp(µi) in (13). This amounts to the “en-
semble average” function〈F ′〉 in (11). Sometimes properties
of this distribution can be deduced from the physics-based con-
siderations. One example of this constraint, already mentioned,
is total flux conservation (since flux is preserved by conformal
mapping). The total flux conservation implies that ensemble-
averaged mean function〈F ′(z)〉 should provide the same mean
value for the total flux. Another example is〈µi〉= 0 in the case
of a perfectly flat canopy, or〈µi〉 = φ0/π = const for a canopy



with a constant slope. The important point is that functions
p(ai) and p(µi) can be deduced only from the canopy proper-
ties, but are not inter-related to the advection-diffusionproblem.

For given PDFsp(a) andp(µ) we can use (13) to generate real-
isations of the associated flux distribution. The ability togener-
ate high fidelity distributions of tracer fluxes is a valuablecapa-
bility of the proposed framework, with applications in the field
of hazard simulation. Applications of this concept are particu-
larly important for validation of data fusion algorithms (source
backtracking, optimal sensor placement and harmful exposure
prediction) [10], which are often built on numerous realizations
of intermittent concentration fields. A more comprehensive
study of this topic will be presented in a separate paper.

As we have discussed above there is an intimate connection be-
tween the statistics of spatial flux distribution within thecom-
plex canopy and the statistics of the winding angle within the
same canopy. This connection is especially useful in the case of
multifractal canopies for which the PDF of the winding angle
can be derived from a multifractal spectrumf (α) by means of
well-known formalism [4, 9, 12]. This leads to the following
PDF for the flux distribution (for details see [4]).

p(J) =
C
J

δ f (α), α(J) = (logδ)−1 log

(

J

J

)

, δ =
H
x
, (16)

whereC is a normalization factor,x is the downstream distance,
J is the averaged flux calculated from the mean-field approxi-
mation (3), (9).

In can be shown that for a simple approximation of shape of
function f (α) (i.e. linear or parabolic), PDFp(J) can be re-
duced to a distribution with the power-law tails that are very
sensitive to the parameters off (α) (maximum, mean, width
etc). These results will be presented elsewhere. Examples of
this PDF are depicted in fig 3.

p(J)

J

〈 f (α)〉= 2.1

〈 f (α)〉= 2.3

〈 f (α)〉= 2.3

Figure 3: Example of PDF for cross-boundary flux for three
different fractal spectra

Conclusions

We have presented a simple physics based model of the concen-
tration and associated fluxes in the fractal canopy. The model
provides a closed system of equations for the mean-field ap-
proximation as well as for the spatial flux distribution within
the canopy. The proposed framework explicitly relates prop-
erties of the tracer transport (mean turbulent velocity anddif-
fusivity) to the morphology of the underlying fractal surface
(fractal spectrum). It can be used as a valuable performance
check of more complicated CFD models, or as a part of an in-
tegrated framework for the simulation and mitigation of haz-
ardous events for military clients and first responders. We hope
that after further validation, the proposed framework can pro-
vide a valuable trade-off between the model performance and

its scientific rigour in situations where numerous “what-if” sce-
narios are to be run within a short timeframe.

Acknowledgments

We acknowledge stimulating and useful discussions with M.
Borgas, R.Gailis, D.Grebenkov, B.Sapoval and C.Woodruff.

References

[1] Barenblatt, G. I., Transfer of a passive additive in a turbu-
lent boundary layer at very large reynolds numbers,Proc
Natl Acad Sci, 100, 2003, 1481–1483.

[2] Bazant, M. Z., Conformal mapping of some non-harmonic
functions in transport theory,Proc. Roy. Soc. A., 460,
2004, 1433–1452.

[3] Bazant, M. Z. and Crowdy, D.,Conformal mapping meth-
ods for interfacial dynamics, Springer, 2005.

[4] Boffetta, G., Celani, A., Dezzani, D. and Seminara, A.,
How winding is the coast of Britain? Conformal invari-
ance of rocky shorelines,Geophysical Research Letters,
35, 2008, LO3615.

[5] Choi, T., Margetis, D., Squires, T. M. and Bazant, M. Z.,
Steady advection-diffusion around finite absorbers in two-
dimensional potential flows,J. Fluid Mech, 536, 2005,
155–184.

[6] Cussler, E. L.,Diffusion: mass transfer in fluid systems,
Cambridge Univ, 1997.

[7] Driscoll, T. A., Algorithm 756: a MATLAB toolbox for
Schwarz-Christoffel mapping,ACM Trans. Math. Softw.,
22, 1996, 168–186.

[8] Duplantier, B., Conformally invariant fractals and poten-
tial theory,Phys. Rev. Lett., 84, 2000, 1363–1367.

[9] Grebenkov, D. S., What makes a boundary less accessible,
Phys. Rev. Lett., 95, 2005, 200602.

[10] Gunatilaka, A., Ristic, B., Skvortsov, A. and Morelande,
M., Parameter estimation of a continuous chemical plume
source, inProc. 11th Int. Conf. on Information Fusion
(FUSSION 2007), Cologne, Germany, 2008.

[11] Koplik, J., Redner, S. and Hinch, E. J., Tracer dispersion
in planar multipole flows,Phys. Rev. E, 50, 1994, 4650–
4671.

[12] Levitz, P., Grebenkov, D. S., Zinsmeister, M., Kolwankar,
K. M. and Sapoval, B., Brownian flights over a fractal nest
and first-passage statistics on irregular surfaces,Phys. Rev.
Lett., 96, 2006, 180601.

[13] Nehari, Z., Conformal Mapping, Dover Publications,
1982.

[14] Pasquill, F. and Smith, F., Atmospheric diffusion, 1983.

[15] Riera, G., Carrasco, H. and Preiss, R., The schwarz-
christoffel conformal mapping for ‘polygons’ with in-
finitely many sides,Int. J. of Mathematics and Mathemat-
ical Sciences, 2008, 2008, 350326.

[16] Skvortsov, A. T., Dawson, P. D., Roberts, M. D. and
Gailis, R. M., Modelling of flow and tracer dispersion over
complex urban terrain in the atmospheric boundary layer,
in Proc. 16th Australasian Fluid Mechanics Conference
(16 AFMC), Gold Coast, Australia, 2007.



[17] Truskey, G. A., Yuan, F. and Katz, D. F., Transport phe-
nomena in biological systems, 2009.

[18] Vandembroucq, D. and Roux, S., Conformal mapping on
rough boundaries: Applications to bi-harmonic problems,
Phys. Rev. E, 55, 1997, 6186–6196.

[19] Yee, E., Gailis, R. M., Hill, A., Hilderman, T. and Kiel,
D., Comparison of Wind-tunnel and Water-channel Simu-
lations of Plume Dispersion through a Large Array of Ob-
stacles with a Scaled Field Experiment,Boundary-Layer
Meteorology, 121, 2006, 389–432.


	Author Index
	Paper List
	Conference Programme

