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Abstract 

Sinusoidal oscillating flow around a circular cylinder at an 
oblique angle is investigated by direct numerical simulation. 
Simulations are carried out for oblique angles of α = 0°, 15°, 30°, 
45° and 60°, Reynolds number Re = 2000 and KC number 
ranging from 6.75 to 30. The oblique angle is defined as the 
angle between the flow direction and the transverse plane of the 
cylinder (see Fig. 1). The predicted vortex shedding regimes 
agree well with those found from physical experiments. When 
the KC number is close to the boundary value of KC number 
between two vortex shedding regimes (KC = 6.75, 15, 20 and 30) 
the correlation of sectional force in cylinder’s spanwise direction 
is very weak and the time series of the transverse force contains 
two or three predominant frequencies, implying the flow switches 
from one mode to another continuously. The span-wise 
correlation factor obtained according to the sectional transverse 
force is always close to 1 for single-mode flows. Comparison 
between the numerical results of  α=0° and those of α≠0° shows 
that the independent principle is applicable for the calculated KC 
number range and the oblique angle ( α≤60°). The oblique angle 
has little effect on mode-averaged transverse force and the in-line 
force coefficients.  

Introduction  

The study of oscillatory flow past a circular is of importance in 
offshore engineering because is represents wave impact on sub-
sea cylindrical structures such as pipelines and risers. Extensive 
study has been done about oscillatory flow past a circular 
cylinder due to its engineering importance. Hydrodynamic forces 
and flow characteristics around a circular cylinder in a sinusoidal 
oscillatory flow are dependent on the Keulegan-Carpenter (KC) 
number and the Reynolds number. The KC number is defined as 
KC = UmT/D, where Um is the velocity amplitude of the 
oscillatory flow, T is the oscillatory period and D is the diameter 
of the cylinder. The Reynolds number is defined as Re = UmD/ν, 
where ν is the fluid kinematic viscosity. Oscillatory flow around 
a circular cylinder is classified into the pairing of attached 
vortices (0 < KC < 7), single pair (7 < KC < 15), double pair (15 
< KC < 24), three pairs (24 < KC < 32) and four pairs (32 < KC 
< 40) vortex shedding regimes, based on the number of vortex 
pairs shed during each half of a flow period [1]. It was also found 
that the relationship between vortex motions and time-dependent 
lift-force variations in each vortex shedding regime. Obasaju [2] 
measured and analysed hydrodynamic forces on a circular 
cylinder undergoing sinusoidal motion in still water for KC 
ranging from 4 to 55 by a mode-averaging technique. It was 
reported that the span-wise correlation of vortex shedding does 
not decrease monotonically with increasing KC. The correlation 
is high when KC is close to the mid range of KC values of a 
vortex regime and low when KC is close to the two boundary KC 
values of a vortex shedding regime.  

Although 2D models have revealed some fundamental features of 
the flow, some inherent characteristics of the flow can only be 

simulated by a three-dimensional (3D) model. Three-dimensional 
numerical studies show that three-dimensionality in the flow field 
always appears once the asymmetric vortex pattern is fully 
developed [3-5]. Studies about steady flow past a circular 
cylinder at an oblique attack showed that both the force 
coefficients and the vortex shedding frequency, that are 
normalized by the velocity component perpendicular to the 
cylinder, are approximately independent on the oblique angle [5-
9]. This is often called the independence principle or the cosine 
law in literature. When an oscillatory flow past a cylinder at an 
oblique angle is concerned, the following questions may arise: (a) 
If a specific vortex shedding regime still happens in the same 
range of KC number as that in the right attack angle case; (b) If 
the independent principle applies to the oscillatory flow case. So 
far, to the best of our knowledge, no work has been done with 
regard to oscillatory flow around an oblique cylinder. 

In this study, sinusoidal oscillatory flow past a circular cylinder 
at an oblique attack is investigated by direction numerical 
simulation. Three-dimensional Navier-Stokes equations are 
solved using a Petrov-Galerkin finite element method. In the 
present study the Reynolds number is a constant of 2000, the KC 
number ranges from 6.75 to 30. The flow oblique angles 
examined are 0°, 15°, 30°, 45° and 60°.  

Numerical Method 

Figure 1 shows the definition of the non-dimensional 
computational domain and the coordinate system. The velocity 
component in the y-direction is zero. The angle between the flow 
direction and the xy-plane is α. Three-dimensional quantities are 
non-dimensionalized by the cylinder diameter (D) and the 
amplitude of the oscillatory velocity in x-direction (Um) as 
         Dxx ii /′= , 

mii Uuu /′= , 2/ mUpp ρ′= , Ttt /′= , 
          ν/Re DUm= , DTUKC m /= ,              (1) 
where primes are used to denote dimensional variables, (x1, x2, 
x3)=(x, y, z), ui is the velocity component in the xi-direction, ν is 
the kinematic viscosity, p is the pressure, T is the period of the 
oscillatory flow. The non-dimensional Navier-Stokes equations 
are 
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Figure 1. Computational domain in non-dimensional sizes 



In the present study, flow past a circular cylinder of a length of 
19.2 is studied. The governing equations were solved by a 
Petrov-Galerkin finite element model developed by Zhao et al. 
[9]. The boundary conditions for the governing equations are as 
follows:  

At the left and right boundaries of the computational domain, the 
velocity is given by 

 )2sin()tan,0,1(),,( 321 tuuu πα= ,                 (4) 

and the pressure gradient in the x-direction is 
)2cos()/2(/ tKCxp ππ=∂∂ . At the two side boundaries that are 

parallel to the xz plane, the velocity component and the pressure 
gradient perpendicular to the boundary are zero. A periodic 
condition was imposed by setting velocity and pressure gradients 
(in all three directions) at the top and the bottom boundaries to be 
equal to each other. At the cylinder surface the no-slip boundary 
condition is applied. 

The computational domain (60×40×19.2) was divided into 
hexahedron 8-node tri-linear elements. Figure 2 shows a typical 
computational mesh near the cylinder. The total number of nodal 
points is 1,203,840. The element size in the cylinder span-wise 
direction is 0.1. The node number along the circumference of a 
cross section of the cylinder surface is 80. The non-dimensional 
distance of a nodal point to the wall: y+=ufmΔ/ν, where Δ is the 
distance from the wall and ufm is the maximum friction velocity, 
was less than 0.4 for all values of α and at least two layers of grid 
points were located within y+<1. Mesh dependency study was 
done and it was demonstrated that further reducing mesh size 
make negligible difference on the results.  
 

 

 
Figure 2. Typical computational mesh near the cylinder  

Right attack angle (α=0°) 

The numerical results shows that flow is in one pair regime for 
KC=10 and 13, where one vortex is shed in half flow period. 
Flows for KC=17.5 and 26.2 are in two- and three-pair regimes 
respectively. Figure 3(a-f) shows the contours of span-wise 
vorticity (ωz) at six instants in xy-plane of z=0 within 20th cycle 
for α=0° and KC=17.5. The flow at this KC number is in two-
pair retime. The instants P1 – P6 are defined in the Figure 3 (g) 
of time series of lift coefficient. When flow is in positive x-
direction, two vortices are shed from the cylinder (Vortex A in 
P2 and Vortex B in P3). Instead of being shed from the cylinder 
surface, Vortex C generated in P3 go around the cylinder surface 
to the top side of the cylinder (P4) after flow reverse. The vortex 
street in the first half of a cycle points to the bottom right 
direction of the cylinder, while it points to the top left direction in 
the second half of the cycle, forming so-called diagonal vortex 
street.  

Figure 4 shows the iso-surfaces of span-wise vorticity |ωz|=1.5 
corresponding to the three instants indicated in Figure 3 (a-c).  
The span-wise vorticity is defined as yuxvz ∂∂−∂∂= //ω .  A 
large incline angle between the vortex tube and the cylinder’s 
span-wise direction is observed. The reason for this large incline 
angle is that there is a phase difference in the vortex shedding 
processes at different z-locations. The phase difference of the 

vortex shedding induces the phase variation of the fluctuating lift 
force in the span-wise direction. Flow regimes for other KC 
number are also observed in the numerical results and are not 
presented here due to paper limitation.  
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Figure 3. Contours of span-wise vorticity ( zω ) at four instants in 20th 
cycle; α=0°, KC=17.5 and z=0 

 

(a) 

 

(b) (c) 

 
Figure 4. Iso-surface of span-wise vorticity Contours of |ωz|=1.5 at four 
instants in 20th cycle (the phases corresponds to those in Figure 3 (a-c)); 
α=0° and KC=17.5. 

Oblique attack angle 

When oscillatory flow past a circular at oblique attack angles is 
investigated, the amplitude of non-dimensional velocity 



component in the direction normal to the cylinder is kept to be 1. 
The Reynolds number, defined using the normal velocity 
component, is Re=2000. The KC number, defined by the 
maximum velocity in the direction perpendicular to the cylinder, 
are the same as those used for α=0°. The independence principle 
(or the cosine law) assumes that the hydrodynamic forces on the 
cylinder in the x- and y-directions can be modelled by the flow 
past a circular cylinder at right attack angle with the input 
velocity being the velocity component perpendicular to the 
cylinder span [10]. The validity of the independence principle, 
that was derived based on the case of steady currents, has not yet 
been verified and will be examined in the case of oscillatory 
flow. 

      
(a) t = 18      (b)  t = 18.125    (c) t = 18.375       (d) t = 18.5 
Figure 5. Streamlines for α=45°, KC=20  

Figure 5 shows the streamlines around the cylinder for α=45°, 
KC=20 in four instants within a half of a flow period. When flow 
reverses at t=18, the streamlines is chaotic, indicating strong 
turbulence. It can be seen that the directions of the streamlines 
are altered significantly close to the cylinder. Some streamlines 
near the cylinder go in the span-wise direction in helical tracks as 
shown Figure 5 (b - d). These streamlines are found to be close to 
the centres of vortex tubes. In Figure 5 (c) and (d), the vortices 
move to the side of the cylinder. Correspondingly, the helical 
streamlines appear at the side of the cylinder too. Zhao et al. [9] 
also reported the helical streamlines near the cores of span-wise 
wake vortices in their study of steady flow past a circular 
cylinder at an oblique attack angle. In the oscillatory flow, the 
span-wise vortices may be located at any locations and the helical 
streamlines may appear wherever the vortices are located. In the 
next half-period of the flow those streamlines will reverse to the 
negative z-direction. 
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Figure 6. Comparison of the lift force between α=0° and α=45° 

The forces on the cylinder at the oblique attack angle case are 
normalized by the velocity amplitude in the normal direction of 
the cylinder. Figure 6 shows the comparison of the time series of 
the lift force between α=0° and 45°. At KC = 17.5, the lift for 

α=45° is almost the mirror image of that for α=0°. At KC = 20, 
where the flow is in multi-frequency mode, both lift coefficients 
are highly irregular and no similarity between the lift coefficients 
can be found. The lift for α=45°appears to have high frequency 
wiggles compared to that of right attack angle case. However, it 
will be demonstrated later on that the mode averaged forces for 
two α values agree with each other.  
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(a) KC=6.75 
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(b) KC=20, m=2 
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(c) KC=20, m=3, pattern 1 
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(d) KC=20, m=3, pattern 2 
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(e) KC=17.5, m=3 

Transverse force for α=45° is the 
mirror of the calculated results 
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Figure 7.  Comparion of mode-averaged force between α=0° and α=45°; 

, in-line α=0°; , in-line α=45°; , transverse 
α=0°; , transverse α=45° 

The mode-averaging technique proposed in Reference [2] is 
employed to analyse the lift force on the cylinder. The mode-
averaged forces for α=45° are compared with those for α=0° in 
Figure 7. In some cases of KC, at which the transverse forces at 
the two oblique angles are in anti-phase to each other, the mirror 
images of the transverse force for α=45° are plotted for the 
purpose of comparison. It can be seen that the mode averaged 
forces for the two attack angles agree with each other 
exceptionally well. Even when the flow is in multi-mode, the 
forces for each mode at α=45° agree well with its counterparts at 
α=0°. The vortex shedding regime at xy-plane is found to be 
independent on α also. The results of the vortex shedding 
patterns are not given due to the page limitation of the paper.  
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Figure 8. Comparison of in-line force coefficient between α=0° and 
α=45° 



The Morison equation is usually used to describe the in-line force 
in the flow direction. The Morison equation is defined by 

)()(
2
1)(

4
1 2 tutuDC

dt
tduCDF DMx ρρπ +=            (8) 

where u(t) is the free-stream velocity component that is 
perpendicular to the cylinder, CM and CD are the inertia and drag 
coefficients respectively. In this study, the inertia and drag 
coefficients are obtained by the least square method based on the 
Morison equation and 15 successive cycles of sectional force at 
z=0. Figure 8 shows the comparison of the in-line force 
coefficient between attack angles. The in-line force coefficients 
agree with each other very well. The difference between them is 
less than 10% in the whole range of KC number examined. 
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Figure 9.  Mode averaged force coefficients for KC=17.5 and different 
oblique attack angles 

Oscillatory flow past a circular cylinder for KC = 17.5 and at five 
different inclined angles (α =0, 15, 30, 45 and 60º) are simulated. 
It is observed that the vortex shedding flows at all the five 
inclined angles are in double pair regime. Figure 9 shows the 
comparison of non-dimensional force among α=0, 30, and 60º. 
The difference among the inline forces among the three α vales is 
very small. For α=30º, two flow patterns with one being the 
mirror image of the another are observed and the lift from both 
flow pattern are plotted in Figure 9 (b). It can be seen from 
Figure 9 (b) that there is little phase difference among the lift 
forces. However, the amplitude of the lift force varies a little bit 
with α.  Figure 10 shows the variation of the inertia coefficient, 
drag coefficient, the maximum lift coefficient (CL,max) and the 
root mean square value (RMS) of lift coefficient (CL,rms) with the 
incline angle α for KC = 17.5. The coefficients CL,max and CL,rms 
are obtained according the mode averaged lift force for m = 3. 
The incline angle α has little effect on the in-line force 
coefficients CM and CD as shown in Figure 10. The CL,max also 
changes little if α≤45º. The root mean square of the lift for α=60º 
is 12% smaller than that for α=0º. The maximum lift coefficient 
CL,max for α=60º is 20% smaller than that for α=0º. 
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Figure 10.  Variations of force coefficients with α (KC=17.5), the 
coefficients are based on the mode-averaged forces of mode m=3. 
 
Conclusions 

Oscillating flow around a circular at both right and oblique attack 
angles is investigated by solving the three-dimensional Navier-
Stokes equations. Calculations are carried out for Reynolds 
number Re=2000 and KC number ranging from 6.75 to 30. The 
KC numbers examined cover four vortex shedding regimes: 
asymmetric, the transverse (single-pair), the diagonal (double-
pair) and three-pair. The results are summarized below. 

The one-pair, two-pair and three-pair flow regimes observed in 
the laboratory tests are identified by analysing the contour of the 
vorticity in the xy-plane.  

Oscillatory flow past a circular cylinder at an oblique attack is 
simulated for α ≤ 60°. The flow regimes observed for flow with 
an oblique angle are very close to the right attack angle case. This 
is evidenced by the good agreement of the forces between cases 
with different attack angles. The flow regime mode does not 
change when attack angle increases from 0° to 60°. The helical 
span-wise streamlines are observed close to the cores of the span-
wise vortex tubes. These vortices move with the vortex 
movement. The forces normalized by the velocity component 
normal to the cylinder agree exceptional well with the α=0° case. 
If the flow is in multi-modes, the mode-averaged force at each 
mode agrees with its counterpart at α=0° very well. The results 
show that the independence principle applies to the in-line force 
coefficients for α ≤ 60°. The results for KC = 17.5 shows that the 
maximum mode-averaged lift coefficient changes little when α 
increases from 0° to 45°, while it decreases by about 20% when 
α increases from 45° to 60°.  
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