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Abstract

In this paper dynamic stability derivatives of an aircraft sub-
jected to periodic pitch oscillations are calculated from the re-
sulting time histories of forces and moments obtained by nu-
merical simulation. These values depend on the quality of the
simulation data, angle-of-attack, the amplitude of the forced os-
cillation as well as the user selection for the post-processing
routine. The results show reasonable agreement with experi-
mental reference data and can be regarded as proof of concept.
Non linearity in the vehicle response can be limited by a reduc-
tion of the forcing amplitude.

Introduction

Computational fluid dynamics (CFD) has been a major tool for
the design of air vehicles for some time now. Beside ensur-
ing the vehicles performance within its operational limits, CFD
is also applied to off-design scenarios such as high-lift oreven
stall. However, these design points are calculated mainly using
steady-state approaches. These disregard dynamic effectssuch
as unsteady manoeuvres of an aircraft in which the flow history
plays an important role. In order to determine the stabilityof
an aircraft under a set of conditions (Re, Ma, angle-of-attack α,
angle-of-sideslipβ) dynamic stability derivatives, also known
as aerodynamic transfer functions, or rate derivatives need to
be considered. In the past, the most common means of deter-
mining derivatives was wind tunnel testing. First numerical at-
tempts were made with doublet-lattice methods [7]. Later, these
values could be determined from the Digital Data Compendium
(DATCOM [10]). However, these values are only valid for tra-
ditional fixed-wing aircraft shapes with cylindrical fuselages,
which have vertical and horizontal stabilizers, but would fail
for aircraft with highly swept or delta wings and also cannot
account for inlets, twin-tails or canards.

Table 1: SDM: Model Dimensions.

Length 0.943 m
Span 0.609 m
MAC 0.229 m
Wing Area 0.117 m2

Fuselage Diameter 0.135 m

Geometry

In this study the Standard Dynamics Model (SDM [9], figure 1)
is used as a generic aircraft. The shape resembles that of an F-16
with its cylindrical fuselage and simple shaped wings and stabi-
lizers, allowing for relatively easy manufacturing of the model
for wind tunnel testing and computational modeling. Due to
geometrical symmetry, only the half model is considered. The
model dimensions reference values used to normalize the forces
and moments match those found in the experimental study [1]
and are shown in table 1.

Figure 1: Standard Dynamics Model atα = 30◦.

Numerical Method

The full Reynolds-Averaged Navier–Stokes equations are
solved using a density-based finite-volume method of second
order in space and time called Cobalt [2]. It is based on a
a compact first-order accurate Riemann solver, combining an
approximate Riemann method of Colella and a Newton proce-
dure of Gottlieb and Groth. The accurate estimation of gra-
dients requires special care in aerodynamic CFD codes. In
Cobalt, a least-square technique based on a QR decomposition
ensures the values stay within limits and does not produce any
nonphysical values. The linearized equation system is solved
with a Gauss-Seidel algorithm found to be better than a Jacobi
method. Turbulence is modeled using the two-equation shear-
stress transport (SST) model of Menter [5].
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Figure 2: SDM: steady-state coefficient of lift (a) and pitching
moment (b); AWT - Ankara Wind Tunnel, Turkey [1], TPI - Po-
litechnico di Turino, Italy [3], DLR (Germany), NAE (Canada)
and FFA (Sweden).



Steady-State Results

Figure 2 shows the normal force and pitching moment coeffi-
cients for anα-sweep. While the predicted normal force is very
close to the measurements, there is some scatter in the pitch-
ing moment due to different wind tunnel blockages and model
mounts [3]. Remaining differences can be attributed to low
mesh resolution around the base and off-surface areas, which
was kept intentionally limited. These are also present in theCz
data, but are a smaller fraction of the total coefficient. TheCFD
results fall in that scatter and form the baseline for the following
dynamic simulations.

Dynamic Results

The dynamic runs atα = 0◦,10◦,20◦,30◦ were started from
the converged steady-state solution at the same angle-of-attack.
The model underwent periodical pitch oscillations at f=2Hz(as
in [1]) with an amplitude ofαA = 1◦ and 5◦. Although the
latter value is much too high to approximate the linear aerody-
namics it was included for comparison with a different aircraft
configuration not shown here. A total simulation time oftS = 2s
covered four full oscillation cycles at a time step of∆t = 10−3s.
Unsteady RANS (URANS) was used for these simulations de-
spite the well-known limitations of that approach regarding the
ability to resolve parts of the turbulent spectrum directly[4]. As
long as the imposed frequencies compared to dominant eddy-
turnover times are small enough, this approach can be justified.
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Figure 3: SDM: time history of pitch oscillation: axial force (a),
normal force (b) and pitching moment (c).

The time histories for axial and normal force and the pitch-
ing moment are shown in figure 3 for two forcing amplitudes
αA = 1◦ and 5◦. Due to scaling the results forαA = 1◦ ap-
pear to be fairly linear. The forces are linear up toαA = 5◦,
whereas the pitching moment (cf. figure 3c) shows a sinu-
soidal response. However, at high angles-of-attack, superim-
posed high-frequency noise can be seen. This is caused by vari-
ational vortex-shedding patterns originating at the leading-edge
extension. The results with respect to angle-of-attack (cf. fig-
ure 4a-c) show that behaviour more clearly. The axial force
response as well as the normal force reveal the existence of
hysteresis loops, which arise because of the phase difference
of the stiffness and damping contributions. ForCz, the stiff-
ness terms predominate, so the hysteresis loops are quite flat,
but increase with angle of attack (figure 4a). ForCm, however,
the stiffness terms are much less dominant and so the hystere-
sis becomes more circle-like (figure 4c). While the dynamic
normal force coefficients remain close to their static values, the
pitching moment coefficient diverts from these values quitesig-
nificantly, particularly at intermediate angle-of-attacks. The ax-
ial force steadily increases and suggests that with increasing α,
some flow features such as flow separation and vortex break-
down are not properly resolved.
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Figure 4: SDM: phase diagram of pitch oscillation: axial
force (a), normal force (b) and pitching moment (c) atα =
0◦,10◦,20◦,30◦.

Dynamic Derivatives

Theory

The rate derivatives can be directly computed from the time his-
tories of the forces and moments in a post-processing step leav-
ing the bulk of the task to the generation of the database. The
method to determine these derivatives follows that described in
Newman [6] and the main parts as well as limitations of the
current approach are briefly outlined here.

In a harmonic pitching motion, the angle-of-attackα and pitch
rateq are

α(t) = α0 +αA cos(ωt) (1)

⇒ α̇(t) = −αA ω sin(ωt) (2)

q(t) = −αA ω sin(ωt) (3)

During one pitch cycle,̇α and q are equal and consequently



aerodynamic forces and moments as well as their higher deriva-
tives cannot be linked to either value and therefore only the
combined effect of both can be calculated. Accounting for
angle-of-attack and pitch-rate variations the time-dependent
pitching moment can be written as

Cm(t) = Cmα α(t)+Cmα̇ α̇(t)
c

2U
+Cmα̈ α̈(t)

c2

4U2 + ...

+Cmq q(t)
c

2U
+Cmq̇ q̇(t)

c2

4U2 + ... (4)

with

Cmα =
∂Cm
∂α

, Cmα̇ =
∂Cm

∂ α̇c
2U

, Cmα̈ =
∂Cm

∂ α̈c2

4U2

,

Cmq =
∂Cm

∂ qc
2U

, Cmq̇ =
∂Cm

∂ q̇ c2

4U2

. (5)

Small perturbation theory demands that only terms up to first-
order (linear) will be considered (α̈, q̇ → 0) and substitution of
the remaining terms with equations 1 and 3 and introducing the
reduced frequencyk = ωc/(2U) leads to

Cm(t) = Cmα α+Cmα̇
α̇k
ω

+Cmq
qk
ω

⇒ = Cmα αA cos(ωt)

−

(

Cmα̇ +Cmq
)

k αA sin(ωt) (6)

This is the analytical form of the pitching moment coefficient
written in terms of dynamic derivatives. After the simulation is
carried out and the vehicle response has been recorded, the in-
formation in figure 3 needs to be analyzed. As it may also con-
tain a phase angleδ in relation to the forcing function (eqn.1),
the pitching moment coefficient is kept as general as possible
and can be evaluated to

Cm(t) = CmA cos(ωt −δ) .

Applying simple trigonometric laws we end up with

Cm(t) = CmA cos(ωt) cosδ+CmA sin(ωt) sinδ , (7)

which contains an amplitudeCmA and phase angleδ to be deter-
mined by a curve-fitting process. This could be done automat-
ically, but currently it requires the user to select the datarange
and therefore the outcome may vary. Comparing equations 6
and 7 allow us to identify the two unknown derivatives referred
to as pitching moment coefficient ‘stiffness’ and ‘damping’:

Cmα =
CmA

αA
cosδ , (8)

Cmα̇ +Cmq = −
CmA

(k αA)
sinδ . (9)

The method described here, can be applied to all forces and
moments (Cx,Cz,Cm) in the same fashion. It is valid for single-
frequency pitch oscillation and therefore cannot be used for
other manoeuvres such as roll, yaw or combinations of any. The
combined damping termsCmα̇ +Cmq can be separated by ap-
plying a harmonic plunging motion to the aircraft (q ≡ 0) and
using a modified post-processing routine to calculateCmα̇. The
method described here as well as more sophisticated methodsto
determine dynamic derivatives, which are also able to account
for non-linear content in the vehicle response, can be foundin
Rohlf et al. [8].
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Figure 5: SDM: axial force stiffness and damping

Results

Figures 5-7 show the results for the dynamic derivatives forthe
axial and normal force coefficient as well as the pitching mo-
ment coefficient. For each forcing amplitudeαA these graphs
show three sets of results. They refer to different selection
windows used in the curve-fitting process and are denoted as
RUN1..3. The axial force stiffness almost linearly increases as
indicated by figure 4a and its damping curve (figure 4b) starts
from zero values (atα = 0◦) and has its largest descent between
10◦−20◦ to level off at the largest angle-of-attack (α = 30◦).
The change of the forcing amplitude has no effect on the stiff-
ness and only marginally affects the damping, in which the set
of curves untangle and show different results forαA = 5◦. This
is attributed to the choice of the data window, forming the basis
for the curve fit. The stronger non-linear content in the vehi-
cle response at high angles-of-attack violates the linear theory-
assumption made in the design of the procedure to calculate the
derivatives. It therefore omits the information containedin the
non-linearity and the results may lack that contribution. How-
ever, these possible errors become apparent as multiple solu-
tions in the graphs. At lower forcing amplitudes, however, all
solutions collapse and the data range has no effect on the out-
come, which was the prime reason for choosing lower forcing
amplitudes.
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Figure 6: SDM: normal force stiffness and damping

The stiffness and damping for the normal forceCz is shown in
figure 6. In addition to the present data, results from two inde-
pendent experiments (AWT and TPI, taken from [1]) are added



for comparison. These data agree qualitatively and show dis-
tinct minima in stiffness and damping atα = 15◦. None of the
CFD results show that behaviour. They remain at lower values
without being affected by either the forcing amplitude or the
data window. As for the damping: there is some scatter at larger
forcing for all angles-of-attack, whereas again the low-forcing
results tend towards a single solution. Although the dynamic
normal force coefficients stay in proximity to the steady state
counterparts (figure 4), the mismatch of CFD and experiments
for the stiffness of that force coefficient is due to the different
slope angles of the hysteresis loop, which directly affect the
stiffness derivativeCzα.
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Figure 7: SDM: pitching moment stiffness and damping

The pitching moment coefficient stiffness and damping (shown
in figure 7a) show reasonably good agreement for theα-range
investigated. While the numerical stiffness results reveal a lo-
cal maximum atα = 5− 10◦ ending up in a linear decline,
both experiments also have the peak atα = 5− 10◦, but then
level-off to almost constant values pastα = 15◦. On the other
hand, the pitch-damping (figure 7b) based on the CFD data re-
markably captures the trends and values of the experiment, de-
spite some differences in these data sets (AWT/TPI). In addi-
tion, DATCOM data (taken from [9]) is added for reference and
only show qualitative agreement without detecting any angular
dependency in the pitch damping.

At first glance, the rather good prediction of the pitching mo-
ment derivatives in comparison to the normal force derivatives
appears to be surprising, considering the gross deviationsof the
dynamic forces and moment from the static one in figure 4.
However, the curve-fitting procedure is affected by errors in the
contribution of the forces and moments. For the normal force
coefficientCz, the stiffness overwhelms the damping contribu-
tion and the uncertainty of the curve-fit is more biased towards
the damping (cf. figure 6). For the pitching moment coefficient
on the other hand, the stiffness and damping are of the same or-
der, resulting in a more balanced error distribution for thecurve
fit and an apparent better agreement with reference data (cf.fig-
ure 7).

Conclusions

This paper documents the capability to predict dynamic deriva-
tives using CFD-based methods using RANS. The aircraft
model was kept fairly coarse to aid computing times. Two sets
of pitch oscillation cases with different forcing amplitudes were
run. Longitudinal stability derivatives were estimated and com-
pared to experimentally obtained values. The results compare
more favourably in the linear range (at lowα) than for higher

angles-of-attack, where non-linear effects limit the validity of
the method. In this case, vortex shedding is the most domi-
nant effect and creates a wide range of turbulent scales, which
directly affect the load distribution on the aircraft and the pitch-
ing moment in particular. As a consequence, the described pro-
cedure is more susceptible to the selection of the user window
used for the curve fit, which determines the derivatives. The
non-linear content can be reduced by decreasing the forcingam-
plitude to lower angles.

The same procedure has been used for harmonic yaw oscilla-
tion, but others or even combined manoeuvres can be easily im-
plemented – just follow the steps described and substitute equa-
tions 1 and 3 with other forcing vectors and consider that other
derivatives come into play, which are also very important for
stability and control analysis.
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