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Abstract

Kolmogorov’s two-thirds, 〈(∆v)2〉 ∼ ε2/3r2/3, and five-thirds,
E ∼ ε2/3k−5/3, laws are formally equivalent in the limit of van-
ishing viscosity, ν → 0. However, for most Reynolds numbers
encountered in laboratory scale experiments, or numerical sim-
ulations, it is invariably easier to observe the five-thirds law. By
creating artificial fields of isotropic turbulence composed of a
random sea of Gaussian eddies whose size and energy distri-
bution can be controlled, we show why this is the case. The
energy of eddies of scale, s, is shown to vary as s2/3, in ac-
cordance with Kolmogorov’s 1941 law, and we vary the range
of scales, γ = smax/smin, in any one realisation from γ = 25
to γ = 800. This is equivalent to varying the Reynolds num-
ber in an experiment from Rλ = 60 to Rλ = 600. While there
is some evidence of a five-thirds law for γ > 50 (Rλ > 100),
the two-thirds law only starts to become apparent when γ ap-
proaches 200 (Rλ ∼ 240). The reason for this discrepancy is
that the second-order structure function is a poor filter, mixing
information about energy and enstrophy, and from scales larger
and smaller than r. In particular, in the inertial range, 〈(∆v)2〉
takes the form of a mixed power-law, a1 +a2r2 +a3r2/3, where
a2r2 tracks the variation in enstrophy and a3r2/3 the variation
in energy. These findings are shown to be consistent with exper-
imental data where the polution of the r2/3 law by the enstro-
phy contribution, a2r2, is clearly evident. We show that higher-
order structure functions (of even order) suffer from a similar
deficiency. (See also [2].)

Introduction

There are three diagnostic tools commonly used to give an im-
pression of the variation of energy with eddy size in isotropic
turbulence. They are the three-dimensional energy spectrum,
E(k), the one-dimensional energy spectrum, F11(k) , and the
second-order structure function, 〈(∆v)2〉(r) . However, it is
well-known that all three diagnostic tools give imperfect mea-
sures of the scale-by-scale energy distribution. For example,
consider an artificial field of turbulence composed of a sea of
eddies (i.e. blobs of vorticity) of fixed size `e. For simplicity
we shall take the vortex blobs to have a Gaussian velocity dis-
tribution,

u = Ωr exp
[
−2r2/`2

e

]
êθ, (1)

though the results would be little changed if we had chosen a
different profile. (Here êθ is the unit vector in the azimuthal
direction.) If these eddies are randomly located and orientated
then we find (see [1]),

E(k) =
〈u2〉`e

24
√

π
(k`e)4 exp

[
−(k`e)2 /4

]
. (2)

Evidently, eddies of a given size contribute to all wavenumbers
in E(k), their contribution not being restricted to wavenumbers
of order k ∼ 1/`e. Fortunately, however, Eq. (2) is sharply
peaked around k ∼ π/`e, and so this is a deficiency of E(k)

which is frequently overlooked. However, the shortcomings of
F11(k) and 〈(∆v)2〉 are not so readily dismissed. It may be
shown that (see, for example, [4]),

E(k) = k3 d
dk

[
1
k

dF11

dk

]
(3)

F11(k) =
1
2

Z
∞

k

[
1− (k/k∗)2

] E(k∗)
k∗

dk∗ (4)

and so F11(k) represents the weighted sum of E(k∗), integrated
from k∗ = k to k∗ = ∞. Thus F11(k) systematically and artifi-
cially shifts energy to small k, with F11(k) peaked at k = 0. For
a random sea of Gaussian eddies of fixed size `e we find, from
Eq. (2) and (3),

F11(k) =
〈u2〉`e

6
√

π
exp

[
−(k`e)2/4

]
. (5)

Evidently, in real turbulence, F11(k) provides a flawed measure
of the distribution of energy across the different eddy sizes.

The situation is no better with 〈(∆v)2〉, where (see [1]),

3
4
〈(∆v)2〉(r)≈

Z
∞

π/r
E(k)dk +(r/π)2

Z
π/r

0
k2E(k)dk. (6)

In words, 3
4 〈(∆v)2〉 represents the energy held below scale

r, plus (r/π)2 times the enstrophy held above scale r. Thus
〈(∆v)2〉 mixes information about energy and enstrophy, and in-
formation about scales smaller and larger than r. So the usual
interpretation of 〈(∆v)2〉 , as the cumulative energy held below
scale r ([3],[5]) is, at best, a crude approximation. More gen-
erally, we see that 〈(∆v)2〉(r) is a very leaky filter, admitting
information from all scales.

In the limit of Re→∞, the differences between the various diag-
nostics is often unimportant in the inertial range as a power-law
in E(k) gives rise to the same power-law exponent in F11 , and
a corresponding power-law in 〈(∆v)2〉 . For example, the five-
thirds law, E = αε2/3k−5/3, corresponds to F11 = α11ε2/3k−5/3

and 〈(∆v)2〉 = βε2/3r2/3, where α = 0.761β = 55α11/9. How-
ever, at the finite values of Re encountered in numerical simula-
tions and experiments, a power-law in E(k) need not correspond
to clear power-laws in F11(k) or 〈(∆v)2〉 . In this paper we in-
vestigate the limitations of F11(k) and 〈(∆v)2〉 in detecting
inertial-range energy distributions at finite Re.

Our central finding is that, in the inertial range, 〈(∆v)2〉 takes
the form of a mixed power-law of the form

〈(∆v)2〉 = a1 +a2r2 +a3r2/3 , (7)

where a2r2 tracks the scale-by-scale variations in enstrophy
while a3r2/3 follows the variation in energy. The pollution of
the r2/3 law by a2r2 is clearly evident in the experimental data
presented.
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Deficiencies of the Second-Order Structure Function

An Idealised Model Problem

In this section we examine a somewhat artificial model prob-
lem, designed to expose the weaknesses in F11(k) and 〈(∆v)2〉
which arise at finite Re. Consider an artificial field of isotropic
turbulence composed of a random sea of vortex blobs, which we
take to be Gaussian eddies, u = Ωr exp[−2x2/s2] êθ in (r,θ,z)
coordinates. Let the eddies be randomly but uniformly dis-
tributed in space, randomly orientated, and have variable en-
ergy and size, s. Also, let Ê(s) be the energy density of the
turbulence, in the sense that Ê(s)ds gives the average kinetic
energy held in the size range s→ s+ds, and

1
2
〈u2〉=

Z
∞

0
Ê(s)ds. (8)

Then it may be shown that (see [1]),

E(k) =
Z

∞

0

Ê(s)s
12
√

π
(ks)4 exp[−(ks)2/4]ds (9)

F11(k) =
Z

∞

0

Ê(s)s
3
√

π
exp[−(ks)2/4]ds (10)

3
4
〈(∆v)2〉 =

Z
∞

0
Ê(s)[1− exp(−r2/s2)]ds (11)

Now we are interested in the consequences for E, F11 and
〈(∆v)2〉 of truncating the range of eddy sizes. Suppose, there-
fore, that the range of eddy sizes is restricted to ` < s < L, with
a low L/` corresponding to a small value of Re, and a large L/`
to a high value of Re. Moreover, suppose that the kinetic energy
held in each decade of scale varies as the power-law sn, i.e.

sÊ(s) =
{

κsn; ` < s < L
0; s < `,s > L (12)

Then Eq. (9)-(11) are readily integrated to give,

I1(k) = E(k)/E∞(k) =
1

Γ(a)

Z (kL/2)2

(k`/2)2
ta−1e−tdt (13)

I2(k) = F11(k) /F∞
11(k) =

1
Γ(b)

Z (kL/2)2

(k`/2)2
tb−1e−tdt (14)

(3/4)〈(∆v)2〉
〈u2〉/2

=
nrn

Ln− `n

Z L/r

`/r
tn−1

[
1− exp(−1/t2)

]
dt (15)

where a = 1
2 (n+5), b = 1

2 (n+1) and Γ is the gamma function.
Here E∞(k) and F∞

11(k) are the functional forms of E and F11
in the limit of L/`→ ∞ with ` << k−1 << L:

E∞(k) =
2n+2κΓ(a)

3
√

π
k−(n+1) (16)

F∞
11(k) =

2nκΓ(b)
3
√

π
k−(n+1) (17)

Since E∞ and F∞
11 are merely power-laws in k, we may regard

I1 and I2 as so-called compensated forms of E and F11, with
I1 = I2 = 1 for L/` → ∞. In the remainder of this section we
shall take n = 2/3, corresponding to Kolmogorov’s 1941 law.
In such a case, E∞ ∼ F∞

11 ∼ k−5/3.

There now arises the issue of how we might relate the size
range, γ = L/`, to the Reynolds number in an experiment, such
as grid turbulence. Let L be the eddy size at the top of the iner-
tial range, ` the eddy size at the bottom of the inertial range,
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Figure 1: Compensated spectra I1 ∼ k5/3E(k) as a function of
k`.

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0.0001 0.001 0.01 0.1 1 10
kl

γ=25
γ=50
γ=100
γ=200
γ=400

ππ/25
π/50π/200

π/100π/400

Range of eddies for γ=25 

Figure 2: Compensated spectra I2 ∼ k5/3F11(k) as a function
of k`.

and η be the Kolmgorov scale, (ν3/ε)1/4. Then we expect
ε = Au3/L and ` = aη where ε is the rate of dissipation of tur-
bulent kinetic energy. A and a are dimensionless coefficients,
u =

√
< u2

x >, ν is the viscosity, and we have assumed that the
integral scale of the turbulence is of order L. We expect the
coefficients A and a to be of order unity, with a universal but
A non-universal, i.e. different for different grid geometries. In
terms of the Taylor microscale, λ, we have λ2 = 15νu2

ε
= 15νu2

Au3/L .
This allows us to express γ in terms of the two Reynolds num-
bers Re = uL/ν and Rλ = uλ/ν. After a little algebra we find

γ = L/` = (A1/4/a)Re3/4 =
(

A
153/4a

)
R3/2

λ
. (18)

We shall see later that grid turbulence experiments suggest that
A/a≈ 0.34→ 0.45, depending on the type of grid used. Taking
a mean value of A/a = 0.4 we have γ≈ 0.0525R3/2

λ
.

Figures 1 and 2 show the compensated energy spectra, I1 ∼
k5/3E(k) and I2 ∼ k5/3F11(k) , respectively, as a function of
k` for γ = 25 to 400. The vertical lines at π/γ and π indicate
the range of eddies present in each case. It is evident that, in
this model problem, E(k) displays a clear k−5/3 law (corre-
sponding to I1 = 1) for γ ≥ 50. The one-dimensional spectrum
does less well, systematically and artificially displacing energy
to low wavenumbers, as expected. Nevertheless, F11 shows
evidence of a k−5/3 law for γ≥ 200 (i.e. Rλ ≥ 240).

Figure 3 shows 〈(∆v)2〉 , normalised by 2u2, as a function of r/`
for γ = 50, 200, 400 and 800, the arrows at r/` = 1 and r/` = γ
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Figure 3: Normalised structure function, 〈(∆v)2〉 /2u2, as a
function of r/`; γ = 50, 200, 400 and 800.
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Figure 4: Comparison of 〈(∆v)2〉 /2u2 with approximation
(19)-(21) for γ = 50.

indicating the range of eddies in each case. There is no clear
r2/3 law at γ = 50 and we do not obtain a decade of r2/3 until γ

reaches ∼ 400 (Rλ ≈ 390). Notice also the 〈(∆v)2〉 ∼ r2 region
to the left of r/` = 1. Clearly, in this model problem, 〈(∆v)2〉
is an inferior diagnostic tool.

The mixing of information about energy and enstrophy

We have already suggested that this failure in 〈(∆v)2〉 arises
from the fact that the second-order structure function mixes in-
formation about energy and enstrophy in accordance with Eq.
(6). We may confirm this as follows. The energy spectrum does
a reasonable job of tracking the energy distribution for γ ≥ 50,
so let us approximate E(k) by E(k) = κk−5/3, π/L ≤ k ≤ π/`,
while E(k) = 0 outside this range. Then Eq. (6) yields,

(3/4)〈(∆v)2〉
< u2 > /2

≈ 1− γ−4/3

2(γ2/3−1)

( r
`

)2
, r < ` (19)

(3/4)〈(∆v)2〉
< u2 > /2

≈ 3(r/`)2/3−2− γ−4/3 (r/`)2

2(γ2/3−1)
, ` < r < L

(20)
(3/4)〈(∆v)2〉

< u2 > /2
≈ 1 , r > L (21)

which is compared with the exact distribution of 〈(∆v)2〉 in
Figure 4 for γ = 50.

Evidently, Eq. (19) - (21) is a good approximation to Eq. (15),
and it has the advantage over the exact distribution in that it
makes explicit the reason for the failure of 〈(∆v)2〉 . Equation
(19) shows that, for r < `, the structure function has nothing
to do with energy, but rather reflects the total enstrophy of the
population of eddies. Conversely, for r > L, the structure func-
tion has nothing to do with enstrophy, but rather measures the
total energy. For ` < r < L, Eq. (20), there is a mixture of two
power-laws, r2/3 and r2, with the former tracking the energy of
the eddies and the latter tracking the enstrophy in accordance
with Eq. (6). Thus the failure of 〈(∆v)2〉 to display a clear r2/3

law at modest values of γ arises from the contamination of the
structure function by enstrophy, as measured by the second in-
tegral on the right of Eq. (6). Note that, as γ → ∞ in Eq. (20),
we recover the two-thirds law for r << L. However, we still get
mixed power-law behaviour when r/L is of order unity, even in
the limit of γ→ ∞.

We note in passing that, if we had adopted the conventional
interpretation of 〈(∆v)2〉 , as the cumulative energy held below
scale r, ([5], [3]), i.e. 3

4 〈(∆v)2〉 (r)≈
R

∞

π/r E(k)dk, then Eq. (20)
simplifies to

(3/4)〈(∆v)2〉
< u2 > /2

≈ (r/`)2/3−1
γ2/3−1

, ` < r < L (22)

and the mixed power-law disappears. We shall compare both
Eq. (20) and (22) with experimental data later. While Eq. (20)
is an excellent fit to the data, Eq. (22) is not.
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Figure 5: Mean velocity and turbulence intensity distributions
across the flow at x/M = 37.2. Squares: Conventional grid,
Circles: Modified grid.

Comparison With Experimental Data

The model problem described above is much too idealised to
be considered representative of real turbulence. Never-the-less,
the central notion embedded in Eq. (6), that 〈(∆v)2〉 mixes
information about enstrophy and energy, is robust. We might
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Figure 6: Low frequency part of the power density spectra.

expect, therefore, that real turbulence exhibits a behaviour not
unlike Eq. (19) → (21), with a mixed power-law in the inertial
range.

In order to test this idea, a set of experiments were performed in
grid generated turbulence. The measurements were performed
in the large wind tunnel at The Norwegian University of Science
and Technology, which has a test section 2m high by 2.7m wide,
with a length of 11m. Two grids were used. One was a conven-
tional grid made of square bars 46× 46mm forming a square
mesh with a mesh size of 240mm. In order to make the turbu-
lent Reynolds number as high as possible, a second grid was
created from the first by blocking every alternate mesh. This
increased the grid solidity from 34.7% to 67.3%. The mea-
surements were performed at x = 9.3m from the grid, corre-
sponding to x/M = 37.2. With the conventional grid the tun-
nel speed was restricted to U = 18.5m/s. Due to the signifi-
cant blocking caused by the second grid, this dropped to about
U = 12m/s when the modified grid was installed. Measure-
ments were made for 180 ≤ Rλ ≤ 320 using the conventional
grid and 290≤ Rλ ≤ 660 with the modified grid.

The measurements were taken using 2.5µm single hot wires
with a ratio of wire length, w, to Kolmogorov length scale,
η, ranging from w/η = 0.9 to 2.9. From initial measurements
of the power density spectra at high sampling rates, the point
where electronic noise started to affect the dissipation spectrum
was determined. The signal was then low-pass filtered at this
frequency and the sampling frequency was set slightly higher
than twice the cut-off frequency.

The severe blocking of the second grid may cause a concern
about the flow homogenity. To check the uniformity at the mea-
surement station, a number of spanwise traverses were made
across 4 meshes for both grids at x/M = 37.2. Figure 5 shows
that the uniformity of both the mean velocity and the turbulence
intensity were about the same for both grids.

It is known that high grid solidity may cause a flapping motion
in the flow that is caused by the interaction of the jets formed
by the grid. This will show up as isolated peaks of increased
energy in the low frequency part of the spectrum. The shedding
frequency is expected to depend linearly on the flow velocity
and should therefore be found in the power spectra at increasing
frequency as the velocity is increased. Figure 6 shows the low
frequency part of the spectra for a range of mean velocities from
about U= 2.5 to 10m/s. Assuming f f lapping ∼U/M we would
expect the range of frequencies to be roughly from 10 to 40Hz.
There are no indications of a velocity dependent energy peak in
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the plotted energy distributions. (The full range power density
spectra are shown in Figure 7.)

For each test condition the signal was sampled in 6 batches
of about 4× 106 samples to ensure that the full range of the
energy spectrum was resolved. Figure 7 shows a selection of
the measured Kolmogorov scaled streamwise one-dimensional
spectrum as function of Reynolds number for both grids. The
collapse is seen to be quite good and for the highest Rλ the iner-
tial sub range covers about two decades of k. The corresponding
second order structure functions are shown in Figure 8.

The dissipation rate, ε, used to estimate the Kolmogorov scales,
were obtained using three independent methods. Assuming
small scale isotropy, ε was computed from ε1 = 15ν

U2 〈(∂u/∂t)2〉.
The second estimate was obtained by integrating the dissipation
spectrum, ε2 = 15ν

R
∞

0 k2
1F11(k1)dk1. Finally, ε was estimated

from the inertial subrange using F11(k1) = C1ε
2/3
3 k−5/3

1 with
C1 = 0.52. The three estimates agreed for all cases to within +/-
10 %; most of the time even better.

The issue now arises as to whether or not the measured structure
functions exhibit a mixed power-law behaviour of the form sug-
gested by Eq. (6) and Eq. (19) → (21). In short, does 〈(∆v)2〉
take the form

〈(∆v)2〉 ∼ a1 +a2r2 +a3r2/3 (23)

in the inertial subrange? Despite the naivity of the model prob-
lem outlined earlier, it seems natural to compare the data di-
rectly with predictions Eq. (19)→ (21). This has the advantage
that Eq. (19) → (21) contain only one free parameter, as we
shall now show.
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The right-hand-sides of Eq. (19) → (21) contain the unknowns
γ and `. However, these are not independent as Eq. (19) must
be compatible with

(3/4)〈(∆v)2〉〈
u2

〉
/2

→ r2

2λ2 (24)

for r → 0, and this demands that

`2 =
1− γ−4/3

γ2/3−1
λ

2 . (25)

Moreover we have seen that

γ = cR3/2
λ

/153/4 , c = A/a (26)

for some dimensionless coefficient, c, which should be of the
oder of, though somewhat less than, unity. Thus, if c is speci-
fied, then Eq. (26) fixes γ and Eq. (25) determines `. In com-
paring the data with Eq. (19) → (21), therefore, we need only
settle on the value of c.

Now A, and hence c, is non-universal and may vary from one
geometry to another. Indeed energy decay measurements for the
two grids show that the ratio of A is Acon/Amod = 1.33, and so
we require c for the conventional mesh to be 33% higher than
that for the modified grid. For the present purposes, we have
chosen c = 0.337 for the modified grid and c = 0.448 for the
conventional mesh.

Figures 9a) to 9d) show the comparison of Eq. (19) → (21)
with the measured structure functions for the modified grid (Rλ

= 290, 440, 550 and 660), while figures 10a) and 10b) show
the comparison for the conventional grid (Rλ = 250 and 320).
The comparison is striking for both sets of data, confirming the
mixed power-law behaviour of 〈(∆v)2〉 in the inertial range.
In order to emphasise the point, Figure 9 and 10 also show the
pure power-law estimate of 〈(∆v)2〉 , Eq. (22), based on the tra-
ditional interpretation of 〈(∆v)2〉 in which the enstrophy con-
tribution is neglected, i.e.

3
4
〈(∆v)2〉 =

Z
∞

π/r
E(k)dk . (27)

The fit is much less satisfactory, as we would expect.
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Figure 9: Comparison between the measured 〈(∆v)2〉 /2 and
equations (19)-(21) for the modified grid. Symbols are mea-
surements and curves the theoretical predictions. The dashed
line represents the pure power-law, equation (22).

549



0.001

0.01

0.1

1

10

0.1 1 10 100 1000 10000

r/l

<(∆v)^2>/2(u')^2

Eq 2.13 to 2.15

Reduced model

a) Rλ = 250

0.001

0.01

0.1

1

10

0.1 1 10 100 1000 10000

r/l

<(∆v)^2>/2(u')^2

Eq 2.13 to 2.15

Reduced model

b) Rλ = 320

Figure 10: Comparison between 〈(∆v)2〉 /2 and equations (19)-
(21) for the conventional grid. Symbols are measurements. The
dashed line represents the pure power-law, equation (22).

Note that, for large γ, Eq. (22) simplify to

(3/4)〈(∆v)2〉
< u2 > /2

= (r/L)2/3 , ` << r < L (28)

which is independent of γ, and hence of c and Rλ. Thus the main
differences between the combined power-law form of 〈(∆v)2〉 ,
which is an excellent fit to the data, and the spurious single
power-law estimate of 〈(∆v)2〉 , which comes from Eq. (27),
are independent of the choice of the coefficient c. The single
power-law estimate of 〈(∆v)2〉 is clearly inferior.

Conclusions

We have shown that the second-order structure function is a
poor filter, in the sense that it mixes information from large and
small scales and information about energy and enstrophy. One
consequence of this is that, in the inertial range, it takes the form
of a mixed power-law of the form, 〈(∆v)2〉 ∼ a1 +a2r2 +a3r2/3

with r2 tracking the enstrophy of the eddies and r2/3 tracking
the energy. This is the reason why Kolmogorov’s two-thirds
law is harder to realise than the equivalent spectral 5/3’s law.
We have illustrated this with a simple model problem which
gives a surprisingly good fit to measurements made in grid tur-
bulence.

We emphasise that it is not just the second-order structure func-
tion which suffers from this problem, all even-order structure
functions mix information from large and small scales, and
this calls into question the physical interpretation of measured
anomalous scaling exponents for higher-order structure func-
tions.

References

[1] Davidson, P.A., Turbulence, An introduction for Scientists
and Engineers, Oxford University Press, 2004.

[2] Davidson, P.A. & Krogstad, P.-Å., On the Deficiency of
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