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Abstract

CFD simulation of an explosion in an internal geometry repre-
senting a shipping container with venting is performed using an
adaptive virtual cell embedding cartesian cell code. Virtual cell
embedding is a simple method to approximate surfaces inter-
secting cells, allowing simple solution of the Euler equations in
very complex geometries. The analysis is performed to produce
contour maps of peak quantities like overpressure and impulse
on the interior walls, and to ascertain the degree of amplification
caused by shock focussing and reflection following movement
of the blast wave along the geometry. Examples of the cartesian
cell code being used to model flows in other geometries are also
presented.

Introduction

The Centre for Hypersonics in the University of Queensland
has recently considered the possibility of testing rocket motors
in a confined facility (for purposes of safety and noise reduc-
tion). The facility in this case had the geometry of a modi-
fied shipping container with vents for the inlet and outlet. This
paper presents a simplified numerical simulation of the worst-
case scenario when the mainly nondetonable rocket propellant
explodes in the facility. Attention will be paid to the magni-
tude of the peak impulse and overpressures generated on the
(assumed rigid) internal walls. Due to the complex flowfield
arising from both venting effects, shock focussing and shock
reflection within the structure, a CFD code for modelling flows
in complex geometries has been developed for use in this simu-
lation.

Two approaches for modelling flows in complex geometry are
by using unstructured grid [15] or cartesian cell methods [1].
Cartesian meshes treat solid objects as immersed within the grid
and accord special treatment to intersected cells to account for
the presence of a surface e.g. by adding extra surface flux terms.
They offer some advantages over the more popular unstructured
grids in terms of simplicity and regularity of implementation,
efficiency, and accuracy [2, 8].

The code implements the virtual cell embedding (VCE) method
[7, 6] as its cartesian cell method. It is a particularly sim-
ple method that subdivides intersected cells into discrete sub-
cells to obtain the approximate obstructed cell areas and vol-
umes, and can be used to make a fast calculation method for
the Euler equations in complex geometries. The code solves a
finite-volume formulation of these equations equations using a
standard explicit (second order Runge-Kutta) MUSCL scheme.
Also implemented is an octree h-refinement capability which
increases efficiency by adding/deleting cells based on solution
gradients. This paper will also present some code validation
cases of transient, compressible flow in other geometries to
demonstrate the usefulness of the numerical methodology.

The Virtual Cell Embedding (VCE) Method

The virtual cell embedding (VCE) method [7, 6] is a sim-
ple cartesian cell method that approximates the surface cutting
through a cell as a single planar surface. The VCE method sub-
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divides an intersected cell into a lattice of subcells each of which
undergo point-inclusion tests with a body (figure 1). In this
manner a summation of subcell volumes inside or outside bod-
ies will yield the approximate obstructed and unobstructed cell
volume respectively. Each cell face likewise undergoes subdivi-
sion to determine the approximate obstructed and unobstructed
cell face area.
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Figure 1: VCE illustration

This information is used to calculate the area and normal of the
surface by approximating it as a single planar wall. Because
of this single-plane approximation, VCE works best when the
surface is not rapidly varying within a cell (which is most often
the case). Convergence with VCE was demonstrated in simple
planar and axisymmetric geometries [6, 14].

Code Validation

The code has been validated against previous numerical simu-
lations and experimental data to demonstrate the effectiveness
of the VCE method. Below are some examples of simulations
of compressible, unsteady flow in various geometries that have
been performed.

Shock-Cylinder Interaction

This two-dimensional example is of a mach 2.81 shock in air in-
teracting with a cylinder. It is an interesting test case to observe
how well VCE can represent curved surfaces. This problem has
been investigated in the past using both finite difference and fi-
nite volume approaches [16, 18]. It has also been solved using
Quirk’s cartesian cell scheme [8], making it a good validation
test case for the current cartesian cell scheme. The grid reso-
lution used was similar to Quirk’s [8] in order to resolve the
vortex.

Figure 2 compares the computed density contours (top figure)
with Quirk’s solution (bottom figure). The comparison is gen-
erally favourable, with the shock, contact discontinuity, vortex
and vortex stem all resolved quite well. The corresponding
adapted grid can be seen in figure 3 which shows refinement
at key flow features.

Pressure histories at various locations along the cylinder surface
are plotted in figures 4 to 6. The time is normalized by the
shock arrival time at the cylinder. These show the general good
agreement between the computed results and results of Yang
and Zoltak et al [16, 18].



Figure 2: Comparison of density contours (top figure) for shock
over a cylinder with the solution of Quirk [8] (bottom picture)
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Figure 3: Adapted grid for shock over a cylinder
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Figure 4: Pressure history at a point along cylinder (0°)
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Figure 5: Pressure history at a point along cylinder (60°)
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Figure 6: Pressure history at a point along cylinder (150°)

Blast in Cityscape

This three-dimensional example attempts to reproduce the sim-
ulation by Rose et al [3, 11] of an explosion in a complex
cityscape environment. An experimental study was also per-
formed to validate their results. Their simulation also used an
adaptive cartesian cell code with similar numerical methodol-
ogy and a polygon clipping algorithm to calculate cut cell data
[10]. In the current simulation the same domain and cell size
was chosen to achieve exactly correspondence in results. How-
ever, the explosive source was modelled by a group of high
pressure and temperature cells with adjusted initial conditions
to give proper blast energy.

Figure 7 shows the geometry and density contours on two
planes some time after the explosion. Figures 8 to 10 plots
pressure histories at some different locations within the domain
and compares them with Rose’s CFD and experimental results.
Three different mesh refinement levels (corresponding to the
grid refinement study in the original reference) were used to
demonstrate convergence of results.

Figure 7: Density contours for explosion in cityscape problem

Agreement with Rose’s results is generally quite good, although
the computed waveforms are more diffuse. This is probably the
result of different implementations of the explosive initial con-
dition. Rose’s code implements a multidimensional remapping
procedure to resolve better the earlier stages of the blast wave.

Simulation of Explosion in Testing Facility

Rocket Motor Testing Facility

The rocket motor testing facility considered was a modified
shipping container with vents for the inlet and outlet (located
on the roof). A diagram of the facility is shown in figure 11.
The walls were modelled as smooth, flat surfaces. The explo-
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Figure 8: Pressure history at gauge 1 (at 0.6, 1.1, 0.105) of [11]
for the explosion in cityscape problem
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Figure 9: Pressure history at gauge 3 (at 0, 0.2, 0.075) of [11]
for the explosion in cityscape problem

sive source is located along the container centerline, 3 m from
the intake end and 1 m off the floor (this means a plane of sym-
metry along the centerline). The explosive energy from the pre-
dominantly ammonium perchlorate-based propellant was cho-
sen to correspond to 20 kg of TNT, and was represented by a
group of high pressure and temperature cells (an instantaneous
detonation model).

Three minimum grid resolutions of roughly 0.23, 0.12 and 0.06
m cell sizes was used to investigate grid convergence. 225 trace
points are distributed uniformly over each interior wall to obtain
contours of peak quantities like overpressure P and impulse (the
maximum value of [Pdt). The simulation was run to a suf-
ficiently late time to ensure the primary blast wave has exited
all vents. No fluid-structure interaction was modelled, with the
walls modelled by rigid reflecting boundary conditions. There-
fore the simulation models the explosion in can represent any
rigid structure with the same internal geometry.

Convergence issues

It was found that the solutions from the three different meshes
did not everywhere exhibit convergent behaviour. This can be
seen in figure 12 where two pressure histories from different
wall locations are plotted. The top figure shows good conver-
gent behaviour in peak overpressure, whereas the bottom figure
shows a larger difference between the two finest meshes than
the two coarsest meshes.

A simulation was performed on a much finer grid (minimum
cell size around 0.015 m) by reducing the domain size to only
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Figure 10: Pressure history at gauge 21 (at 1.56, 1, 0.075) of
[11] for the explosion in cityscape problem
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Figure 11: Diagram of testing facility

encompass the inlet-end wall. Thus up until an early time
(around 5 ms) solutions on the inlet-end wall between the larger
and shorter domains could be compared. It was observed that
the average error in impulse values between the larger and
shorter domain grids was around 3% (quite good), but in peak
overpressure was as much as 23%. Impulse, being the integral
of pressure over time, is less sensitive to error and grid resolu-
tion than a single quantity like overpressure.

There are some reasons why convergent behaviour was difficult
to achieve for this problem. (1) The problem’s three-dimesional
nature and relatively large computational domain limited the
number of cells to ensure computation within acceptable mem-
ory and time limits, (2) the solution also depends to an extent on
the initial explosive shape, which is varies with grid resolution.
(3) The solution at farther distances depends on how well shock
focussing and reflection is captured at earlier stages as the blast
interacts with the facility interior, which is in turn quite depen-
dent on cell resolution, and (4) the mesh was not always adapted
to the finest level at surfaces due to the grid adaptation criterion
implemented.

Although not all parts of the contour maps of peak quantities
along the interior walls will display convergent behaviour, qual-
itative data can still be extracted. As peak pressures increase
in value for increasingly finer meshes, these contours represent
minimum bounds on the true solution.
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Figure 12: Some pressure histories for the explosion in inter-
nal geometry problem. The top picture shows convergent be-
haviour, the bottom does not.

Contour Map Results

The contour maps of peak overpressure and impulse along the
facility’s interior walls are shown in figures 13 to 16. These
contours have been produced from the finest resolution mesh.
Some brief comment on each figure is given below.

Figure 13 shows the peak quantities along the long side wall.
Note that peak values occur at the charge location, and are great-
est at corners at edges due to focussing. Peak pressures are of
the order of tens of megapascals. It is interesting that the im-
pulse is nearly constant along the wall section from the charge
to the outlet vent.

Figure 14 plots contours along the inlet-end wall. It is inter-
esting that there are two distinct maximum pressures that occur
near but not exactly at the floor of the facility (z=0). The im-
pulse plot shows greater values along the floor edge, which is
due to the shock focussing there and the charge height of burst.

Figure 15 shows contours along the outlet-end wall, which is
farthest from the charge. By this stage the waveforms have
undergone some numerical diffusion and thus the contours are
smoothly varying. Peak pressure occurs at the facility floor and
have attenuated to the order of megapascals. Impulse values are
also greatest at the floor.

Figure 16 plots peak values along the interior ceiling. There
exists a local maximum in pressure directly above the charge it-
self, although peak values occur at edges (at the charge location)
due to focussing. The effect of venting on reducing peak values
can be seen on the impulse plot where a marked decrease can
be observed. The impulse is nearly constant along the section
from the charge to the outlet vent.

Pressure Amplification and Failure on the Outlet Wall

It is interesting to see just how much larger the overpressures are
at the far-end outlet wall and outlet vent compared to a free field
air burst. The amplification arises from the blast wave travelling
through a contained space with multiple shock focussing and
reflection. It was found based on the trace data on the finest
resolution mesh that the average peak overpressure on the outlet
wall and outlet vent was 1.66 MPa and 0.5 MPa respectively.
The peak overpressure at the vent corresponded to a reflected
shock from the outlet wall (the initial incoming shock had a
lower peak).

Using scaled spherical TNT free field data from Kinney [5], it
was found that at the same scaled distance as the outlet wall the
overpressure would be around 0.024 MPa. Assuming a shock
with this overpressure undergoes normal reflection, the reflected
overpressure can be calculated via the Rankine-Hugoniot rela-
tions to be 0.053 MPa. This means amplification factors at the
outlet wall and vent of at least 31 and 9.4 respectively. Sim-
pler (but faster) semiempirical methods [4, 12] for overpressure
estimation based on design curves in free air burst would un-
derestimate greatly the overpressures in this internal geometry
even at farther distances from the charge. This conclusion is
also repeated in previous experimental and numerical studies
on the effect of blast channeling in street geometries [9, 13]

Approximating the outlet wall as a simply-supported flat plate
of thickness 5 mm subject to the uniform load of 1.66 MPa,
it is possible to calculate the maximum wall stress (located at
the wall center) by a simple formula obtainable from a solid
mechanics text [17]. As the wall is a nearly square section, the
stress is simply 0.2874q(L/t)? where q is the load, L and t are
the length and thickness respectively. It was computed to be 110
GPa; this is clearly much higher than the tensile strength of the
steel wall (which is on the order of hundreds of megapascals),
making failure very likely (at least at the wall center).

If wall failure alone is being investigated, it is unnecessary
to use numerical simulation, as hand calculation via Kinney’s
scaled data [5] would be sufficient to demonstrate this. As the
reflected overpressure is calculated to be 0.053 MPa (based on
Kinney’s curve), the computed stress is 3.5 GPa, which is still
too high. Failure on at least some parts of the other walls in
closer proximity to the explosive source can probably be as-
sumed. In reality the walls are corrugated, effectively raising
stiffness, and are not simply supported at their edges. More de-
tailed modelling of the wall response is best obtained via a finite
element simulation.

Conclusion

An adaptive virtual cell embedding CFD code has been used to
obtain compute contour maps of important quantities like peak
overpressure and impulse along all walls of a rigid internal ge-
ometry subject to a blast from an explosive source. This sce-
nario corresponds to a simplified model of a detonating rocket
motor in a modified shipping container testing facility. The code
has also been used effectively to model compressible, transient
flows in other geometries. In this internal geometry, amplifica-
tion of overpressure at the far-end outlet wall of the structure
was shown to be much larger than that predicted via the free
field TNT design curves. A grid refinement has shown that
peak impulse values along the walls was computed quite reli-
ably, although grid independence was not fully achieved for all
simulations.
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