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Abstract

We apply theK-& model to analyse the expansion of a free tur-
bulent jet. Due to nonlinearity of turbulent diffusion thedel
leads to spatially confined solutions (solutions with firste-
port). We seek the turbulent energy, dissipation and moumment
as power series in spatial coordinate across the jet with-tim
dependent coefficients. The coefficients obey a dynamil sy
tem containing slow and fast variables. We show, with the hel
of numerical analysis, that there exists an attractor jetto-
ries of the dynamical system, based on a few slow variables.

Introduction

The literature on turbulent jets is extensive and spans over
decades [1, 9, 3]. As in other areas of mechanics, special in-
terest present attracting regimes, however, this aspebeqgét
dynamics has not received as close attention as, for example
analysis of the structure of pulsations. A self-similaraadting
regime of an instantaneous jet, based on the relativelytrfig

¢ model, was obtained in [8]. In the present paper we analyse
the K-e model. We again look for universality, however, from

a different angle. Namely, we treat the governing equatams
dynamical system and look for attractors of trajectories.

Consider a turbulent jet, which is statistically uniformhari-
zontal direction and expands freely in an unbounded magml|
fluid. The source of turbulence can be, for example, a short im
pulse in the shape of a narrow plane layer. The velocity shear
between the jet and surrounding fluid generates the turbulen
kinetic energyK. In the long-term, the turbulent energy decays
due to the expansion and due to the loss into heat. The latter
loss is expressed by the volume energy dissipationerate

The expansion is driven by the turbulent diffusion which is
essentially nonlinear. As a consequence, there is a sharp
boundary—front—between the jet and surrounding fluid. We il
lustrate this property with an example of a single diffustgoia-

tion with the diffusion coefficient depending on the unknown
function [10] (for other examples see, e.g, handbook [6Pe T
equationd; f = dx(foxf) leads to the well-known (similarity)

solution f(x,t) = at=1/3 (1— szt‘2/3>, wherea and B are
constants. The point in space whdi,t) turns into zero de-
fines the position of the front: 4 Bx2t ~2/3 = 0 givesx = h(t) =
t%/3,/B. Importantly, witha, B fixed, the solution attracts a

whole class of solutions evolving from different initial rodi-
tions.

We use theK— model [5, 4] to describe the dynamics of the
turbulent energy, its dissipation rate and momentum:
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The coordinate is directed across the turbulent layer starting
in its middle. The layer is plane, and infinite and uniform in
the y and z directions. a3, B123 andx are positive non-
dimensional constants. The system (1) is non-dimensiohal,
tained from the dimensional one by using some useful scales,
for example, the average initial velocity across the [&t,as

the velocity scale; the initial width of the jeth2as the length
scale;U? as the turbulent energy scalé?/h as the dissipation
rate scale; anti/U as the time scale.

The initial conditions folK, € andu across the jet are supposed
to have dome-like shapes with finite support. We assume that
they are symmetric with respect to the middle plane. On the
turbulent frontx = h(t), the functionK(x,t), €(x,t) andu(x,t)

are equal to zero and remain zero beyond the front feh(t).

Turbulent jet as dynamical system

We look for solutions of (1) in the form of power series
K = A(t) [1— B (t)x? — Ba(t)x* — Bg(t)x® — ..,

£=P(t) [1—Ro(t)x® — Ry(t)x* — Rg(1)x® —...], )

U= M(t)[1—No(t)x® — Ng(t)x* — Ng(t)xE — ...].

HereA, P andM are the amplitudes, expectedly maximum val-
ues of the functions reached in the middle of thexet, 0. The
structure functions in the square brackets describe thedikm
profiles descending from the maxima down to zerrath(t).

Substituting (2) into the dynamic equations (1) and coifegt
terms with same powers afgives the system of ODEs
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namic equations (3),

58A2B,B, PB, 10A2B3 ) 2A3B,
By = —01——F—— +a3—= +o1—3 A=—ay —asP,
20A%B3R, 10A%B,R3 10A%B;yR, : P2
B e B P= —[312A2R2—[33K,
20A2B4R, 30A2Bg 8AB,M2N3 . 2A2MN,
+01 = +01 = +0ao P M= —x B ,
Ly 4AM2N§R2_G 16AM2N2N4_G PRy B g 1OAZB§+ PB2 . o 6A282R2+G 12A%B,
2 [5) 2 ) 3 A’ 2 = 1 P a3 A az 2) 1 [3)
: 40A%ByRy 2A%RoRy PR4 4AMZNZ PR
- B2 T2 g2
Ry=—P1 S +B1 P Bs A a0—p CERy e,
10A%B3R,  20A%B,RZ  _ 20A%B4R, : A2R2 PR2 12A232R2 12A%Ry
e —p T B R Ro=p —Bs—= +B
P P ©)
10A%R3 30AZR,Ry 10A%R3 4AM2N2 PB
2 2
" tB 5 TR @) o AR
30A2R:R, 3042 4AB,M?N3 : 2A°NZ  12A%ByN,  B6AZN,R,  12A2N
+B1 +B1 R6+Bz 2 No =X 2 _ 22 272 =3
P P P P P P P
16AMZN,N, BZP 2B,PR, . 58A2B,B, PB,4 10A%B3
*BZip +B3T*33T B4:—317P G3T +0g =
B4P PR2 20A%B2R 10A2B 10A2B
+Ba—r- +Ba 2 L 2ERe o JOVER | 1ONBeRy
P P P
- 40A2B,N, 2A2N2N4 10A%B3N, 20A2B4R 30428, 8AM2N2B
Ny — — 42 6 252
4 X P +X = +X = +01 P +0az P +0az P
20A%BoNoR, _X20A284N2 +X10A2N2R§ o 4AM2NZR, o 16AMZN,N, o P2Ry
P P P 27p 2P AP
2 2 2
X 10AN2Ry +X20A NsRy +X30A N6. The system (5)—(6) contains 10 equations with respect to 10
P P P unknowns:A, P, M, By, Ry, N, B4, R4, N4 andh, all depending
ont.

Among possible closure assumptions we choose that that sati Introduce the new time by

fies the physical requirement that the fronts of the turlbiugen d
ergy, dissipation rate and momentum coincide at all timegs. B
the physics of diffusion, if the fronts are different inltia they

should quickly catch up with each other. Consider a notional o 5 ) )
situation when the momentum front is initially behind the en ~ @nd divide (6) byA“B;/P. This conveniently transforms (6)

d _ v
(A2By/P)dt  dt 0 @

ergy and dissipation-rate front (we suppose that these oo ¢ into the form with linear terms:
cide). Then the turbulent diffusion will instantaneousirisfer >
the momentum forward up to the energy/dissipation-ratatfro A= —a2A— T
position. Conversely, if the momentum front is initiallyesd A BZ
of the energy/dissipation-rate front, it will stay motieat for 2R,P
some time since there is no turbulence in the vicinity. The mo = —Bl— B3A3B
mentum front will move only when the energy/dissipatiomtro
catches up, after which the fronts will move together. M = — 2M N2 )
B
Thus, we require thd{, € andu turn into zero at the same loca- p2 198
tion x = h(t). Taking into account the terms up to the 4th order By’ = —0110By + 03— 5 +a16Ry + 01— 4
in (2) we have A B2 @®)
2 4 —a 4M2N2 —a @
1fBzh 7B4h =0, 2 AB, 3A3Bz7
R — RuH = 8RS P2R 2R4
1-Reh"—Rah™ =0, ®) = PulRo+ P 5= BsAgBZ +B1——
1—N2h2—N4h4:O. 4M2N2 P2
—Bo— 2 4 Bsxa
The front equations (5) are complemented by the truncated dy
2NZ2  BN;R
N,/ :—le\I2+x—+x z 2er—z';14
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Figure 2: Trajectories (different views) in the spaces & th
Figure 1: Trajectories (different views) in the space of ¢me dissipation-rate variables.

ergy variables.

M’ from (8) we deduce the dynamic equations rand S.
Also, we add the dynamic equation fbiy so that all the 4th

P2B, order variablesBy4, Ry andNg4, now evolve according to their
Bs' = —01158B4 + O35 — %8, +0(11082 0120B2R; respective dynamic laws. We obtain
20B4R; 30B, ES SN
+0110R8 + 01 10R, + 01 B‘; 2 tay Bze S = —a125-ag +>(4B—2
e a2 © i
Lo, VNG AMENGR, 16M2NaNy £~ 5.aRE | o 6E 1 (30a 2 E2
2= % 2 B, 2 2B, =—B1 B, T +(Baz— 83)8_2’
P2R4 ' 1284
By, = —0110B; E 6R —
A3B 2 011082 +03E +a16R; + 01 B,
4N2 ER,
Numerical solutions of the system (5), (8), (9) are dispthiye —0‘2§2 B
Fig. 1-3. We usedi; = 0.09, a, = 0.09, 03 = 1, 1 = 0.07,
B2 = 0.13, B3 = 1.92, x = 0.09. The initial positions of the - BRIy 4 By 52 R% +33@ Ly 2 12?4
energy front, dissipation-rate front and velocity fronirended.
From the Figures we observe that some variables are fast and —[324N2 L+ BaE—psER2 ZER2 (11)
some are slow. The amplitudésandP decay rapidly in com-
parison toB; andR,. This decay is largely due to the terms IN2 6N-R 1N,
with a3 andfs, linked to the energy dissipation rate. The veloc- No' = —x12N, +XB—2 +X 82 2 +XB— ,
ity amplitudeM, compared td\,, decays not as rapidly though. 2 2
The variabled,, Rq andN,4 (and higher-order variables) decay
rapidly compared t®,, R, andN,. Thus, the variableB,, R, ) EB, )
andN, are slow. Bs' = —0158B4 +agB—2 +0710B5 — a1 20B2R;

Notice that, except in the amplitude equations (8) the fast v
ablesA, P and the variabl® appear in the right-hand sides only +0110R5 + 01 10Rg + 01y
in ratiosP2/A3 andA/MZ2. We anticipate, and confirm later in
the paper, that these ratios are slow. We define

+1Bz

8N2 L 4N22R27a 16NNy ERy
S ¥, s By’

20B4Ry 30Bg
B

+0a,—=

p2 A

Differentiating (10) and expressing the derivati&’s P’ and
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Figure 3: Trajectories (different views) in the space of tke
locity variables.
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The dynamical system (11)—(12) is augmented to the closed
form by the front equations

1-Byh? —Bsh* —Bgh® =0,
1-Ryh? —R4h* —Rgh® =0, (13)
1-Nyh2 —Ngh* =0.

Fig. 4 demonstrates th&, S and B, behave linearly against
each other and therefore can be identified as slow variables.

Notice a spectral gap between the linear decay rates in (12):
the coefficient aBy4, (—58011), is about 5 times larger than the
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Figure 4: The behaviour of the slow variables.

coefficient aBy, (—1001), atRy, (—12B1), and atNp, (—12x).
The numerical experiments show that the linear terms damina
on early stages of the dynamics forciBg R4 andN, to decay.
Accordingly, the linear terms quickly drop to a level congdale

to the rest of the terms.

Simple example of an attractor

This behaviour resembles the dynamics near attractorsdcall
centre manifolds. A centre manifold attracts trajectonés
dynamical system where some, slow, variables have zerarline
decay rates, while the other, fast, variables have negltivar
decay rates [2]. We illustrate this on a simple example frépn [

X=—px—xy,
(14)
y=—y+x* -2
If p=0, then it can be shown that the attractor is precisely
y=x. (15)

Driven by the linear ternj—y) the variabley quickly drops and
trajectories fall onto the attracting manifold (15) on white
nonlinear termgx? — 2y?) are comparable to the linear term
(—y). Observe that the variable depends ort via the slow
variablex.

If pis positive but relatively small, the attracting manifolainc
be found as a perturbation of (15). The case of smpal 0 is
similar to our situation in (12).

Remarkably, in the unperturbed cgse- 0 the attractor (15), in
its leading order, can be obtained by simply replacing thne ti
derivativey by zero: 0= —y+x% — 2y? giving y = X2+ 0(x%) —

x? whenx — 0. The motion on the attractor is obtained from the
first equation (14). In the leading order=—x3.

If p> 0, then, strictly speaking, the derivatiyenust be taken
into account. However, ip is small enough, that is the spectral
gap between the linear decay rate lyafnd p of x is consider-
able, thery = x can acceptably approximate the attractor.

Attractor for the turbulent jet
We take the similar approach in our turbulence problem.
Replace in (11)—(13) the time derivativesBf, Ry and N4 by

zeroes. This gives 6 algebraic equations to determine the6 v
ables:By, R4, Na, Bg, Rg andh in terms of the slow variablés,
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Figure 5: Actual behaviour d8,4 (solid line) and its projection
onto the attractor. End part of the curve is zoomed.

S, By, Ry andNy:

0=1-Byh? — B4h* — Bgh®,
0=1-Ryh? — Ryh* — Rgh®,
0= 1—Nph® — Ngh*,

EB
0= —01588,+ a3B—4 + ;1083 — 01 20B,R,
2
308g
B2

ER4
—ag
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+a110R3 +0110R + 01
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We solved system (16) numerically and compared typical tra-
jectories: a trajectory obtained from the full system (113}
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Figure 6: Actual behaviour d®4 (solid line) and its projection.

and a trajectory obtained as described above where thesvalue
of the slow variables are taken from the solution of the fyd-s
tem. The latter trajectory therefore constitutes the ptae of

the actual trajectory onto an attractor.

The comparison is shown in Fig. 5-7. For the energy and
dissipation-rate variables the actual solution curve eggnes

its projection very closely. For the velocity variables #e
tual curve and its projection are also close although to seles
extent. Overall, the attraction is quite evident.

The higher-order coefficients of series (B), R andN; for i =
6,8,..., can be expressed through the slow varialile$§, By,

R> andNy in the similar way a4, R4 andN4 above. As new
equations are added into the algebraic system (16), marester
are to be added in the front equations (13). As a result, any
number of the coefficients of the series (2) can be deternased
implicit functions of the slow variables; such functions wie
constitute the sought attractor.

Conclusions

We analysed th&K— model of the expanding turbulent jet
shaped as a plane layer. The profiles of energy, dissipaien r
and velocity across the jet are sought in the form of power se-
ries. The series coefficients satisfy a nonlinear dynansgsi

tem with a few slow variables. Using these variables, we doun
an approximate form of attractor in the form of a system of al-
gebraic equations connecting higher-order variables &owd s
variables. The convergence of the trajectories to thecitirés
demonstrated.
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