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Abstract

We apply theK-ε model to analyse the expansion of a free tur-
bulent jet. Due to nonlinearity of turbulent diffusion the model
leads to spatially confined solutions (solutions with finitesup-
port). We seek the turbulent energy, dissipation and momentum
as power series in spatial coordinate across the jet with time-
dependent coefficients. The coefficients obey a dynamical sys-
tem containing slow and fast variables. We show, with the help
of numerical analysis, that there exists an attractor for trajecto-
ries of the dynamical system, based on a few slow variables.

Introduction

The literature on turbulent jets is extensive and spans over
decades [1, 9, 3]. As in other areas of mechanics, special in-
terest present attracting regimes, however, this aspect ofthe jet
dynamics has not received as close attention as, for example,
analysis of the structure of pulsations. A self-similar attracting
regime of an instantaneous jet, based on the relatively rough K-
ℓ model, was obtained in [8]. In the present paper we analyse
the K-ε model. We again look for universality, however, from
a different angle. Namely, we treat the governing equationsas
dynamical system and look for attractors of trajectories.

Consider a turbulent jet, which is statistically uniform inhori-
zontal direction and expands freely in an unbounded motionless
fluid. The source of turbulence can be, for example, a short im-
pulse in the shape of a narrow plane layer. The velocity shear
between the jet and surrounding fluid generates the turbulent
kinetic energyK. In the long-term, the turbulent energy decays
due to the expansion and due to the loss into heat. The latter
loss is expressed by the volume energy dissipation rateε.

The expansion is driven by the turbulent diffusion which is
essentially nonlinear. As a consequence, there is a sharp
boundary—front—between the jet and surrounding fluid. We il-
lustrate this property with an example of a single diffusionequa-
tion with the diffusion coefficient depending on the unknown
function [10] (for other examples see, e.g, handbook [6]). The
equation∂t f = ∂x( f ∂x f ) leads to the well-known (similarity)

solution f (x,t) = αt−1/3
(

1−βx2t−2/3
)

, whereα and β are

constants. The point in space wheref (x,t) turns into zero de-
fines the position of the front: 1−βx2t−2/3 = 0 givesx = h(t) =

t1/3
√

β. Importantly, withα, β fixed, the solution attracts a
whole class of solutions evolving from different initial condi-
tions.

We use theK–ε model [5, 4] to describe the dynamics of the
turbulent energy, its dissipation rate and momentum:

∂tK = α1∂x

(

K2

ε
∂xK

)

+α2
K2

ε
(∂xu)2

−α3ε ,

∂tε = β1∂x

(

K2

ε
∂xε

)

+β2K (∂xu)2
−β3

ε2

K
,

∂tu = χ∂x

(

K2

ε
∂xu

)

.

(1)

The coordinatex is directed across the turbulent layer starting
in its middle. The layer is plane, and infinite and uniform in
the y and z directions. α1,2,3, β1,2,3 and χ are positive non-
dimensional constants. The system (1) is non-dimensional,ob-
tained from the dimensional one by using some useful scales,
for example, the average initial velocity across the jet,U , as
the velocity scale; the initial width of the jet, 2h, as the length
scale;U2 as the turbulent energy scale;U3/h as the dissipation
rate scale; andh/U as the time scale.

The initial conditions forK, ε andu across the jet are supposed
to have dome-like shapes with finite support. We assume that
they are symmetric with respect to the middle plane. On the
turbulent front,x = h(t), the functionsK(x,t), ε(x,t) andu(x,t)
are equal to zero and remain zero beyond the front, forx > h(t).

Turbulent jet as dynamical system

We look for solutions of (1) in the form of power series

K = A(t) [1−B2(t)x
2
−B4(t)x

4
−B6(t)x

6
− ...] ,

ε = P(t) [1−R2(t)x
2
−R4(t)x

4
−R6(t)x

6
− ...] ,

u = M(t) [1−N2(t)x
2
−N4(t)x

4
−N6(t)x

6
− ...] .

(2)

HereA, P andM are the amplitudes, expectedly maximum val-
ues of the functions reached in the middle of the jet,x = 0. The
structure functions in the square brackets describe the dome-like
profiles descending from the maxima down to zero atx = h(t).

Substituting (2) into the dynamic equations (1) and collecting
terms with same powers ofx gives the system of ODEs

Ȧ =−α1
2A3B2

P
−α3P ,

Ṗ =−β12A2R2−β3
P2

A
,

Ṁ =−χ
2A2MN2

P
,
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2
P

+α3
PB2

A
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P
−α2
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A
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2
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P
,

(3)
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. . .

(4)

Among possible closure assumptions we choose that that satis-
fies the physical requirement that the fronts of the turbulent en-
ergy, dissipation rate and momentum coincide at all times. By
the physics of diffusion, if the fronts are different initially, they
should quickly catch up with each other. Consider a notional
situation when the momentum front is initially behind the en-
ergy and dissipation-rate front (we suppose that these two coin-
cide). Then the turbulent diffusion will instantaneously transfer
the momentum forward up to the energy/dissipation-rate front
position. Conversely, if the momentum front is initially ahead
of the energy/dissipation-rate front, it will stay motionless for
some time since there is no turbulence in the vicinity. The mo-
mentum front will move only when the energy/dissipation front
catches up, after which the fronts will move together.

Thus, we require thatK, ε andu turn into zero at the same loca-
tion x = h(t). Taking into account the terms up to the 4th order
in (2) we have

1−B2h2
−B4h4 = 0,

1−R2h2
−R4h4 = 0,

1−N2h2
−N4h4 = 0.

(5)

The front equations (5) are complemented by the truncated dy-

namic equations (3),
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(6)

The system (5)–(6) contains 10 equations with respect to 10
unknowns:A, P, M, B2, R2, N2, B4, R4, N4 andh, all depending
on t.

Introduce the new timeτ by

d
(

A2B2/P
)

dt
=

d
dτ
≡ ()′ (7)

and divide (6) byA2B2/P. This conveniently transforms (6)
into the form with linear terms:
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Figure 1: Trajectories (different views) in the space of theen-
ergy variables.
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(9)

Numerical solutions of the system (5), (8), (9) are displayed in
Fig. 1–3. We usedα1 = 0.09, α2 = 0.09, α3 = 1, β1 = 0.07,
β2 = 0.13, β3 = 1.92, χ = 0.09. The initial positions of the
energy front, dissipation-rate front and velocity front coincided.

From the Figures we observe that some variables are fast and
some are slow. The amplitudesA andP decay rapidly in com-
parison toB2 and R2. This decay is largely due to the terms
with α3 andβ3, linked to the energy dissipation rate. The veloc-
ity amplitudeM, compared toN2, decays not as rapidly though.
The variablesB4, R4 andN4 (and higher-order variables) decay
rapidly compared toB2, R2 andN2. Thus, the variablesB2, R2
andN2 are slow.

Notice that, except in the amplitude equations (8) the fast vari-
ablesA, P and the variableM appear in the right-hand sides only
in ratiosP2/A3 andA/M2. We anticipate, and confirm later in
the paper, that these ratios are slow. We define

E =
P2

A3 , S =
A

M2 . (10)

Differentiating (10) and expressing the derivativesA ′, P ′ and
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Figure 2: Trajectories (different views) in the spaces of the
dissipation-rate variables.

M ′ from (8) we deduce the dynamic equations forE and S.
Also, we add the dynamic equation forN4 so that all the 4th
order variables,B4, R4 andN4, now evolve according to their
respective dynamic laws. We obtain

S ′ =−α12S−α3
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(11)
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Figure 3: Trajectories (different views) in the space of theve-
locity variables.
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The dynamical system (11)–(12) is augmented to the closed
form by the front equations

1−B2h2
−B4h4

−B6h6 = 0,

1−R2h2
−R4h4

−R6h6 = 0,

1−N2h2
−N4h4 = 0.

(13)

Fig. 4 demonstrates thatE, S and B2 behave linearly against
each other and therefore can be identified as slow variables.

Notice a spectral gap between the linear decay rates in (12):
the coefficient atB4, (−58α1), is about 5 times larger than the
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Figure 4: The behaviour of the slow variables.

coefficient atB2, (−10α1), atR2, (−12β1), and atN2, (−12χ).
The numerical experiments show that the linear terms dominate
on early stages of the dynamics forcingB4, R4 andN4 to decay.
Accordingly, the linear terms quickly drop to a level comparable
to the rest of the terms.

Simple example of an attractor

This behaviour resembles the dynamics near attractors called
centre manifolds. A centre manifold attracts trajectoriesof a
dynamical system where some, slow, variables have zero linear
decay rates, while the other, fast, variables have negativelinear
decay rates [2]. We illustrate this on a simple example from [7]:

ẋ =−px−xy ,

ẏ =−y+x2
−2y2 .

(14)

If p = 0, then it can be shown that the attractor is precisely

y = x2 . (15)

Driven by the linear term(−y) the variabley quickly drops and
trajectories fall onto the attracting manifold (15) on which the
nonlinear terms(x2

− 2y2) are comparable to the linear term
(−y). Observe that the variabley depends ont via the slow
variablex.

If p is positive but relatively small, the attracting manifold can
be found as a perturbation of (15). The case of smallp > 0 is
similar to our situation in (12).

Remarkably, in the unperturbed casep = 0 the attractor (15), in
its leading order, can be obtained by simply replacing the time
derivative ˙y by zero: 0=−y+x2

−2y2 giving y = x2+o(x2)→
x2 whenx→ 0. The motion on the attractor is obtained from the
first equation (14). In the leading order ˙x =−x3.

If p > 0, then, strictly speaking, the derivative ˙y must be taken
into account. However, ifp is small enough, that is the spectral
gap between the linear decay rate 1 ofy and p of x is consider-
able, theny = x can acceptably approximate the attractor.

Attractor for the turbulent jet

We take the similar approach in our turbulence problem.

Replace in (11)–(13) the time derivatives ofB4, R4 andN4 by
zeroes. This gives 6 algebraic equations to determine the 6 vari-
ables:B4, R4, N4, B6, R6 andh in terms of the slow variablesE,
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Figure 5: Actual behaviour ofB4 (solid line) and its projection
onto the attractor. End part of the curve is zoomed.

S, B2, R2 andN2:

0 = 1−B2h2
−B4h4

−B6h6 ,

0 = 1−R2h2
−R4h4

−R6h6 ,
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(16)

We solved system (16) numerically and compared typical tra-
jectories: a trajectory obtained from the full system (11)–(13)
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Figure 6: Actual behaviour ofR4 (solid line) and its projection.

and a trajectory obtained as described above where the values
of the slow variables are taken from the solution of the full sys-
tem. The latter trajectory therefore constitutes the projection of
the actual trajectory onto an attractor.

The comparison is shown in Fig. 5–7. For the energy and
dissipation-rate variables the actual solution curve approaches
its projection very closely. For the velocity variables theac-
tual curve and its projection are also close although to a lesser
extent. Overall, the attraction is quite evident.

The higher-order coefficients of series (2),Bi, Ri andNi for i =
6,8, ..., can be expressed through the slow variablesE, S, B2,
R2 andN2 in the similar way asB4, R4 andN4 above. As new
equations are added into the algebraic system (16), more terms
are to be added in the front equations (13). As a result, any
number of the coefficients of the series (2) can be determinedas
implicit functions of the slow variables; such functions would
constitute the sought attractor.

Conclusions

We analysed theK–ε model of the expanding turbulent jet
shaped as a plane layer. The profiles of energy, dissipation rate
and velocity across the jet are sought in the form of power se-
ries. The series coefficients satisfy a nonlinear dynamicalsys-
tem with a few slow variables. Using these variables, we found
an approximate form of attractor in the form of a system of al-
gebraic equations connecting higher-order variables and slow
variables. The convergence of the trajectories to the attractor is
demonstrated.
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