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Figure 1: An example of one of the obstacle arrays.

Abstract

A new mathematical model of pollutant plume dispersion in
an urban environment is presented. The model uses parame-
ters that explicitly take into account turbulent flow close to the
ground and the urban canopy parameters enabling an analytic
calculation of the plume concentration profiles and concentra-
tion fluctuations. Model predictions are compared with some
recent experimental data, showing a close match. The model
developed can be used as an analytical tool for predicting pol-
lutant plume behaviour in complex urban environments, or as a
prototype and performance check for a new generation of dis-
persion models.

Introduction

There has been a growing interest in recent years in the mod-
elling of hazards arising from the atmospheric dispersion of pol-
lutant agents in the environment, and the threat that they pose to
the population and military forces. This is a particularly chal-
lenging problem in an urban setting.

Dispersion of pollutant tracer in an atmospheric boundary layer
(ABL) over a heterogeneous (urban) canopy is a complex pro-
cess to be described by advanced methods of fluid dynamics,
turbulence theory, diffusion and statistics. Using comprehen-
sive modelling is computationally intensive and too time con-
suming when applied to operational problems when a reliable
outcome has to be produced within a limited time frame. Plume
characterisation requires the development of simplified analyt-
ical models of turbulent dispersion based on physical assump-
tions and “first principles” physics considerations. These mod-
els must still be simple enough to be easily treated numerically
in an operationally viable way. Such models can also provide a
theoretical foundation for “backtracking” problems, i.e. finding
a pollutant source in a complex canopy under various meteoro-
logical conditions. The purpose of this paper is to summarise
the recent research conducted by DSTO (HPPD) in the devel-
opment of such models.

A NEW MODELLING FRAMEWORK

Mean Flow in a Complex Canopy

The flow model in a surface layer within and above the canopy
should correctly describe the average (i.e. non-fluctuating) ve-
locity field. The traditional model for ABL velocity profile is

the celebrated log-law profile

U(z) =
v∗
κ

ln
(

z−d
z0

)
, (1)

where U(z) is the horizontal velocity, z is the distance from the
ground, v∗ is the friction velocity, κ = 0.4 is Von Karman’s con-
stant, z0 is the roughness height and d is the so-called displace-
ment height. For the real ABL flow over the canopy both d and
z0 should be considered as fitting parameters.

It has been known for a long time (dating back to Prandtl, see
[8]) that the ABL mean velocity profile can be fairly approxi-
mated by a power-law function:

U(z) = av∗
(

z−d
z0

)m
, (2)

where U(z) is the horizontal velocity, a and m are constants (m
is a main parameter of our model). For the ABL over a flat
smooth surface the following relationship has been established
between (1) and (2) [2]

a =
lnRe√

3
+

5
2
, m =

3
2 lnRe

, (3)

where Re is the Reynolds number of the flow in ABL. Observed
values of m in the atmosphere range from nearly 0 in very un-
stable conditions, representing perfect mixing and a uniform ve-
locity profile, to nearly 1 in very stable conditions, approaching
the Couette linear profile of laminar motion over a plane sur-
face. For neutral conditions m ≈ 1/7 [8]. The value of m also
depends on surface roughness: roughness promotes mixing near
the surface, which reduces the velocity gradient at small z and
thus leads to larger variation in m. Based on the so-called dis-
tributed drag approach it has been recently shown (see Harman
et al 2007) that the entire influence of the canopy on the ABL
flow (2), (1) can be described by only one parameter that de-
scribes the ratio of the canopy surface area to the total area. For
an array of identical cylinders (similar to Fig. 1 ) this parameter
is approximately equal to

ε =
2H
r0

1−λp

λp
, (4)

where all parameters in this formula are determined by the
canopy morphology (H is the canopy hight, r0 is the radius of
the cylinders and λp is the packing density of canopy elements).
The limiting values of ε correspond to sparse (εÀ 1) and dense
(ε ¿ 1) canopies. We have developed a consistent theoretical
framework that allows us to derive a “modified” velocity profile
U(z) (2) for a given value of ε , i.e. for a given canopy. Our
approach is based on “smooth” matching of the two solutions
of momentum balance (below and above the canopy) near the
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Figure 2: Average horizontal velocity profile. The pink/solid
line is for a sparse canopy (ε = 0.5) and the blue/dashed line for
a dense canopy (ε = 2).
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Figure 3: Measured velocity profiles for a simulated urban
canopy at different positions relative to canopy objects.

canopy top. We have derived an algebraic system for functions
d(ε), z0(ε) to account for the effect of the canopy:

d
H

= (1−σ),
z0

H
= σe−1,

1
κ

√
εσ
2

= tanh

(√
2εκ2

σ

)
. (5)

The solution of the last equation in system (5) provides a value
of σ(ε) that should be substituted in the first two to obtain d(ε),
z0(ε) and hence a “canopy-modified” profile U(z) given by (2)
and (1). We found that for a large ε function d(ε)→ 0, z0(ε)→
0 as a power law (i.e. rather slowly) and d(ε) = z0(ε) = 0 if H =
0. It should be emphasised that in the proposed framework, the
entire morphological variety of canopies manifests itself only in
different values of parameter ε.

Examples of velocity profiles calculated with (5) are presented
in Fig. 2. In Fig 3 we present our experimental data from a wa-
ter channel experiment ([5]). The urban canopy was modelled
by an array of cubic obstacles that were packed in regular or
random patterns (see Fig 1). The velocity measurements were
conducted in various positions within a canopy cell (including
wake areas). The solid line in Fig. 3 is our model prediction,
which represents an average velocity profile for the whole cell.
This is to be compared to the individual point measurements of
velocity within each cell, which vary significantly from point
to point. The point C2 corresponds to the position directly be-
hind the obstacle (wake area) with a clear visible reverse flow
(negative velocity). Our simplified models attempt to capture
the “averaged-over-cell” behaviour. For a variety of obstacle
array configurations, we observed a reasonably good agreement
between our model and the measured velocity profiles.

Mean Concentration Profile

For the derived velocity profile in and above the canopy we
computed the mean concentration field from the advection-
diffusion equation. For the power-law profile ((2) with d = 0)
the mean concentration can be modelled by the well-known an-

0 10 20 30 40 50 60 70 80
0

0.5

1

1.5

2

2.5

3

3.5

4

-310×

X=63.5 mm

X=127.0 mm

-80 -60 -40 -20 0 20 40 60 80
0

0.5

1

1.5

2

2.5

3

3.5

-310×

X=63.5 mm

X=127.0 mm

0 10 20 30 40 50 60 70 80

C
on

ce
nt

ra
tio

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4
-310×

X=190.5 mm

X=317.5 mm

-80 -60 -40 -20 0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

-310×

X=190.5 mm

X=317.5 mm

Height above ground (mm)
0 10 20 30 40 50 60 70 80

0

0.05

0.1

0.15

0.2

0.25

0.3

-310×

X=508.0 mm

X=825.5 mm

Cross-stream dist. from source (mm)
-80 -60 -40 -20 0 20 40 60 80

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

-310×

X=508.0 mm

X=825.5 mm

Figure 4: Concentration data fit in the “clipped” model for dif-
ferent downstream distances (Cz for the left column and Cy for
the right column). The horizontal axis is the distance from the
ground (left column) and cross-stream distance from the source
position (right column) .

alytical solution (see [8])

C(x,y,z) = Cy(x,y)Cz(x,z). (6)

where Cy is the horizontal (lateral) and Cz is the vertical con-
centration profile. The function Cy can be presented in the stan-
dard Gaussian form and for the vertical profile Cz we have the
stretched exponential solution:

Cz = C0 exp(−Bζα) . (7)

with
C0(x) =

Q
v0z0

α
Γ(β)

Bβ, (8)

ζ =
z
z0

, B(x) =
x0

x
,

x0

z0
=

d
α2 , β =

1+m
α

, (9)

where Γ(·) is the Gamma function, α = 1+2m, u0 = av∗, d =
const and Q is the rate at which the source releases the pollutant
(for details see [8]).

It is evident that the solution (7) is a valid representation for the
concentration profile above the canopy top (i.e. for z À d). In
order to have a consistent profile for all z it should be matched
with the pollutant concentration modelled within the canopy
(i.e. for z≤ d). Two models of the concentration profile within
the canopy were validated. The first model was a “clipped”
profile, when we simply assumed a constant value of concen-
tration for z≤ d. The justification for such a model is the strong
process of turbulent mixing that occurs within the canopy that
should “smooth out” all concentration gradients. The data fit to
the “clipped” model for different downstream positions is pre-
sented in Fig 4. The left column is the vertical concentration
profile and the right column is the lateral structure of the plume
with a Gaussian fit.

The second evaluated concentration model was based on allow-
ing the variation of α with height to provide the best data fit i.e.
α = α(z). The rationale behind this framework was the known
limiting values of α: α = 1+2m for zÀ d, and α = 2 for z≤ d
(Gaussian diffusion in stagnation areas near canopy floor). As a
reasonable approximation we proposed

α = (1+2m)(1+φexp(−z/d)), (10)
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Figure 5: Concentration data fit in “variable α” model. All no-
tations are as in Fig 4.

where φ = (1− 2m)/(1 + 2m) is the function of the velocity
profile parameter m and canopy parameter ε (since d = d(ε)). It
is worth noting that Cz (7) depends on α in rather a convoluted
way (not only through an exponential power) causing a com-
plex deformation of the concentration profile even with minor
change in α(z).

The data fit to the “variable α” model is presented in Fig. 5 (left
column). As in Fig. 4, the right column is the lateral structure of
the plume with a Gaussian fit. In general we observed that both
models are in good agreement with the experimental data. The
data fits are nearly indistinguishable downstream of the source.
Closer to the source the “variable α” model seems to be a better
representation of the vertical plume structure. The better perfor-
mance of the “variable α” model can be attributed to the more
adequate description of the process of turbulent mixing in the
canopy layer (i.e. mixing is changing within the canopy with
height). The “clipped” model corresponds to constant mixing
in the canopy. For dense canopies, with the stagnation flows
near the ground, changes with height are not so important ([6])
and both models produce very similar results.

Concentration Fluctuations

The approach outlined above models the development of a
“mean plume” within a complex environment. This is the time
averaged behaviour of a real dispersing plume, or equivalently,
the average pattern that would be seen if an identical release of
material was performed many times. Model analysis of pollu-
tant release events also requires the development of “concentra-
tion realisation” models that give a statistically sound represen-
tation of possible instantaneous patterns of plume dispersion.
This is important to enable the investigation of uncertainty or
risk in hazard assessments, as well as to provide realistic syn-
thetic environments for operational analysis studies.

It is well-known that tracer fluctuations are very intermittent,
so a correct description of intermittency is an important step in
building realistic models of tracer fluctuations (see [5], [10]).
Intermittency (i.e. the fraction of time when concentration has
zero/non-zero values) manifests itself as a “singular” term in the
PDF (Probability Density Function) of tracer concentration (see
[5])

f (C) = γψ(C)+(1− γ)δ(C), (11)
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Figure 6: Examples of intermittency profile as a function of in-
verse mean concentration: slice across the centre of the plume,
different downstream positions (top row - no-obstacle canopy,
bottom row - 1H regular obstacle array). Straight lines corre-
spond to Eq.(13).

where δ(·) is the delta function, γ is the intermittency parameter
( γ = 1 corresponds to the no-intermittent distribution), ψ(C) is
any “regular” concentration PDF (see [5] ).

A simple model of intermittency can be developed based on
the following physics-based consideration. Let us assume that
tracer is advected in the form of consolidated structures (blobs,
sheets [4]). This is a realistic assumption since the system is
far from equilibrium, so the tracer distribution is far from being
perfectly mixed. The existence of discrete structures of tracer
suggest that Poisson statistics may provide a useful framework
for describing tracer fluctuation behaviour, with “an individual
event” being attributed to the “tracer blob” passing a particular
point of the flow. Then for the probability of the k occurrences
of such an event we can apply the celebrated formula of the
Poisson distribution

Prob(k,λ) =
exp(−λ)λk

k!
, (12)

where λ is the average number of occurrences. Then for the
“no-occurrences” event we simply get Prob(0,λ) = exp(−λ) ir-
respectively of any statistical properties of “blobs distribution”.
This evidently results in the following formula

1− γ∼ exp
(
−β

C
Cmax

)
, (13)

where we have used the obvious relationships: γ = Prob(0,λ),
λ = βC/Cmax, β = − ln(1− γmax). Thus we may expect that
intermittency factor γ exponentially decreases with C .

The formula (13) was validated with our data from the water
channel experiment. The results are presented in Fig.6, where
ln(1− γ) is plotted against Cmax/C in the Log-Log scale, so
straight lines correspond to Eq.(13). We can see that the re-
lationship (13) holds for wide range of parameters (concentra-
tions, downstream positions and types of obstacle arrays).

Our next step was to developed a simple model for concentra-
tion intensity i = C2/C2−1. The important result was found in
[5] where it was shown that for Gifford’s isotropic meandering
plume model

i+1∼
(

Cmax

C

)ζ
, (14)

with 0≤ ζ≤ 1/2.
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Figure 7: Examples of concentration intensity profile as a func-
tion of inverse mean concentration: slice across the centre of the
plume, different downstream positions (top row - no-obstacle
canopy, bottom row - 1H regular obstacle array. Solid line is
Eq. (14) with ζ = 1/3.

A similar formula can be derived in another simplified case -
tracer dispersion in the surface layer when any dependency on
cross-stream direction can be neglected (line source). In that
case all concentration moments can be described by the same
universal profile [7] , so C2 ∼ C. Then for i we arrive at the
same Eq.(14), but now with ζ = 1. These results provide a solid
foundation for an assumption that the functional relationship of
(14) should hold in a more general case (i.e. when the plume is
strongly anisotropic and 3D effects cannot be neglected). We
also expect the “shape” parameter to have a rather universal
value.

The above assumption was validated with our experimental data
and the results are presented in Fig. 7. The value of i + 1 is
plotted against Cmax/C in the Log-Log scale, so straight lines
should correspond to (13). Again, we can see that the relation-
ship (13) holds over a wide range of the model parameters. The
solid line corresponds to the “fitting” value ζ = 1/3.

A more advanced model of plume concentration fluctuations
has been developed based on the so-called “fluctuating plume”
approach, where overall fluctuations are represented as a com-
bined effect of slowly oscillating plume meander and fast in-
plume fluctuations. Thus, for the conditional PDF of concentra-
tion in the absolute frame f the following general representation
was adopted [5]:

f (C, x) =
Z

fr(C, x−Xc) fc(Xc)dXc, (15)

where fc is the PDF of centroid meander, fr is the concentra-
tion PDF in the relative frame (associated with plume centroid),
Xc(t) is the position of centroid. Development of realistic mod-
els for fr and fc requires the application of rather complicated
statistical methods and are described in detail in our other pub-
lications (see [5], [10], [9]). It is well-known that the PDF
for horizontal meander is always close to Gaussian [5]. Based
on Large Deviation Theory we have proposed a model where
the PDF for vertical plume meander zc can be described by a
Gamma distribution [9]

fcz(Zc)∼ Za−1
c exp

(
−Zc

b

)
, (16)

where, based on the properties of Gamma distribution [1], pa-
rameters a and b can be expressed in terms of the the first two

momentums of Zc: ab = Zc, ab2 = Zc
2−Zc

2. For plumes in
the ABL the estimate Zc

2 ≈ 2Zc
2 holds over a wide range of

parameters [8], so a−1 in (16) seems to be rather small.

We have proposed a new model for in-plume fluctuations in a
recent paper [3], where we related the concentration fluctuation
intensity i with the ABL flow above the canopy. The important
conclusion is that the statistical properties of the plume in the
canopy can be parameterised with the flow parameters (m,ε), so
a proposed two-parameter model (2), (4) also provides a consis-
tent framework for concentration fluctuation modelling.

CONCLUSIONS

Physics based models of a plume in an urban canopy allow a
simplified (but still adequate) analytical description of pollution
transport in a complex environment which is particularly useful
for hazard management applications. The proposed theoretical
framework has been validated against our water channel exper-
imental data and has provided a close match. The proposed
framework can help to validate and justify some more empiri-
cally based and heuristic assumptions of some operational dis-
persion models. Our modelling framework can thus be used as
a valuable performance check of such models, or be extended
to an operational model prototype, able to be linked to larger
modelling systems.
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