
16th Australasian Fluid Mechanics Conference
Crown Plaza, Gold Coast, Australia
2-7 December 2007

Derivative Free Global Optimisation of CFD Simulations

R. C. Morgans1, C. J. Doolan 1 and D. W. Stephens2

1School of Mechanical Engineering
Adelaide University, South Australia, 5005 AUSTRALIA

2CSIRO Minerals
Box 312, Clayton South, Victoria, 3169 AUSTRALIA

Abstract

This work reports on the use of numerical optimisation tech-
niques to optimise objective functions calculated by Computa-
tional Fluid Dynamics (CFD) simulations. Two example ap-
plications are described, the first being the shape optimisation
of a low speed wind tunnel contraction. A potential flow and
viscous flow solver have been coupled to produce a robust com-
putational tool, with the contraction shape defined by a two pa-
rameter Bézier curve. The second application is a simplified
test case with a known minimum calculated using a commercial
CFD code.

For the optimisation of complex CFD simulations, it is some-
times advantageous to use an efficient derivative free global
optimisation algorithm because of potentially long simulation
times, the objective function may contain multiple local minima
and it is often difficult to evaluate analytical or numerical gra-
dients. The Efficient Global Optimisation (EGO) algorithm se-
quentially samples results from an expensive calculation, does
not require derivative information, uses an inexpensive surro-
gate to search for a global optimum, and is used in this current
work.

For both applications, the EGO algorithm is able to efficiently
and robustly find a global optimum that satisfies any constraints.

Introduction

Developments in Computational Fluid Dynamics (CFD), and
widespread access through commercial and open source soft-
ware, have allowed engineers and designers to improve product
or process quality through simulation.

If a suitable measure of quality of the product or process can be
defined, then mathematical optimisation techniques can poten-
tially automate the design process. This measure, or “objective
function” is used by the optimisation routine to systematically
change the inputs to the simulation until the “best” objective has
been achieved.

CFD calculations typically involve the solution of coupled non-
linear equations, which can limit the uptake of optimisation for
a number of reasons:

Efficiency. The equations can exhibit behaviour over a large
range of time and length scales. As such, they can be very
computationally expensive, even when simplifying assumptions
such as Reynolds averaged turbulence models are used. Optimi-
sation methods that minimise the number of objective function
calculations are required.

Non smooth behaviour. In some cases, CFD solutions may not
exhibit “smooth” behaviour, in that derivatives with respect to
input variable may not exist, either because of discontinuities in
the underlying physics, or discontinuities introduced by the nu-
merical method. Many optimisation methods require derivative
information, hence are unsuitable in this case.

Local Minima. For some problems, there exist many locally
optimal solutions where there is no possible improvement in the
objective function in the neighbourhood of the solution. Many
optimisation methods can only find local minima, and global
methods are preferred.

Robustness. The non-linearity also makes the equations difficult
to solve automatically for all conditions. If a solution fails, (of-
ten after a long computation), then methods that can deal with
these “hidden constraints” are required.

The Efficient Global Optimisation (EGO) [6] algorithm sequen-
tially samples results from an expensive calculation, does not
require derivative information, uses an inexpensive surrogate
to search for a global optimum. This makes it ideal for opti-
misation of expensive CFD simulations, and its application is
investigated in this paper.

We present application of the EGO algorithm to two example
problems, the shape optimisation of a low speed wind tunnel
contraction and the minimisation of the pressure drop for flow
between parallel plates with an analytic loss function. The
structure of the paper is as follows: the EGO optimisation
method is described; the problems and results are specified and
presented; and finally conclusions are drawn and future work
discussed.

Efficient Global Optimisation

EGO is a surrogate (or meta) modeling technique, where the
expensive cost function evaluation is replaced with a model that
is both cheap to construct and evaluate. The work of Jones et.
al. [6], refined by Sasena [11] into the algorithm superEGO, has
developed an efficient surrogate method for global optimization,
called Efficient Global Optimization (EGO, which was origi-
nally called SPACE in Schonlau [12]).

This technique uses a Kriging [7] surrogate model to predict the
values of the objective function at a few, sparsely distributed
sample points. These sample points are generally chosen by a
space filling sampling method. Kriging, developed in the geo-
statistics and spatial statistics fields, models the variation of the
unknown function as a constant value plus the variation of a nor-
mally distributed stochastic variable. It is essentially a method
of interpolation between known points that gives a mean predic-
tion, ŷ(x), in addition to a measure of the variability of the pre-
diction, s(x), the estimated standard deviation. Another suitable
global optimisation technique such as the DIRECT method [3]
is then employed to solve an auxiliary problem to find the next
best place to sample for a minimum primary objective function.
The secondary objective function used to solve the auxiliary
problem in this application is the Expected Improvement (E [I])
objective function. The improvement function (I) is defined as
the improvement of the current prediction, ŷ(x), at point x over
the minimum value of the current set of samples, ymin, i.e.

I = max(ymin− ŷ(x) ,0) (1)
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1. An initial set of input parameters is selected.
2. The true objective function is evaluated for all new members of the set.
3. A Kriging surrogate model is fitted to the values of the objective function.
4. The expected improvement objective function, calculated using values

from the computationally inexpensive Kriging model, is minimised using
any suitable global optimisation method.

5. The result of the minimisation (the next input parameters most likely to
improve the true objective function) is added to the set.

6. The process repeats from step 2 until a predetermined number of iterations
is reached.

Figure 1: Efficient Global Optimisation algorithm

The expected improvement, defined as the expectation of the
improvement, is given by

E [I] = (ymin− ŷ(x))CDF
(

ymin− ŷ(x)
s(x)

)
+ s(x)PDF

(
ymin− ŷ(x)

s(x)

)
(2)

where CDF is the standard normal cumulative density function,
and PDF is the standard normal probability density function.
The point at which the value of the expected improvement is
maximised gives the best point at which to calculate the true
objective function. The Expected Improvement is constructed
to search for both local and global minima [12, 6]. The surro-
gate model is then updated to include the newest sampled point,
and the operation repeated until the sampling point does not
change and the global minimum of the objective function has
been found. An overview of the algorithm appears in Figure 1.

An implementation of EGO developed in Morgans [9] will be
used in this work, with simple penalty constraints.

Contraction shape optimisation

The design of low speed wind tunnel contractions is extremely
important for the provision of a quality test flow in the work-
ing section. Contractions increase the mean velocity of the test
flow so that the flow quality improving devices (screens, honey-
comb) act in a low velocity environment where pressure losses
are reduced. They also reduce the mean and fluctuating veloc-
ity variations to a smaller fraction of the average velocity [8].
The design of a contraction requires the flow to remain attached
along the length of the contraction and to minimise the outlet
boundary layer height as well as outlet flow non-uniformity.

To compute the flow within a wind tunnel contraction, in-
stead of solving the potentially time consuming laminar Navier-
Stokes equations, a classical approach is taken. The inviscid
flow within the contraction is calculated using a finite volume
three-dimensional potential flow solver (OpenFoam [5]). This
solver returns the velocity in the contraction U. The velocity
distribution at the walls is then used with an integral method
(Thwaites’ method) to generate laminar boundary layer solu-
tions. The boundary layer solver returns the Reynolds number
based on momentum thickness Reθ and skin friction coefficient
C f at critical locations on the surface. The minimum value
of C f (x) along the length of the contraction surface must be
greater than zero for the flow to remain attached. The outlet
flow non-uniformity is measured buy the standard deviation of
the axial velocity at the exit plane. A complete description of
the contraction, the numerical method used and its validation
can be found in Doolan and Morgans, 2007 [2].

The shape of the contraction is prescribed by a Bézier curve, a
flexible shape defined by a third order polynomial. It is specified
by two vectors, with the curve tangent to the start of each vec-

tor, and the “strength” of attachment to the vector determined
by its length [10]. Figure 2 shows a range of contraction shapes
constructed by controlling the length of the vectors using con-
trol parameters. The parameters are limited to vary between 0
and 1, and are defined as the length of the vector normalised by
the contraction length. Parameter a controls the inlet curvature
using the upper vector and b controls the outlet curvature using
the lower vector.
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Figure 2: Contractions shapes Bézier geometry

The objective function must represent the goals of the optimisa-
tion, which is to minimise the exit plane boundary layer height,
keep the flow attached and keep exit plane flow uniformity to
a reasonable value. These criteria can be described mathemati-
cally as an objective function.

minReθ (x = L) (3)

with constraints

minC f (x) > 0 (4)
std(Ux (x = L)) < 1 % (5)

For some extreme values of the control parameters the computa-
tion of the contraction fails. This is caused by poor mesh quality
from the automated meshing procedure. This hidden constraint
is dealt with implicitly through modifying the objective func-
tion. If the computation is unable complete, a value of 600 is
returned for Reθ. The maximum value of Reθ for completed
calculations is also limited to 600, a value well above previous
standard designs.

The constraints are enforced using a penalty method. This adds
a term to the objective function that measures the degree to
which any constraints are violated.

f̂ (x) = f (x)+
n

∑
i=1

pi min(0,ci) (6)

where f (x) is the true objective function (Equation 3), f̂ (x)
is the penalised objective function (equal to the true objective
function in the feasible region where all constraints are satis-
fied), n is number of constraints, pi is the penalty parameter for
constraint i and ci is the measure of constraint violation. The
penalty parameter is set to 600 for both constraints, which was
found to be large enough to penalise violated constraints. If the
penalty parameter is too large, then there may be difficulty in
fitting a surrogate to the sampled data points. For the first con-
straint, the measure is zero if Equation 5 is true, and one if it is
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Table 1: Comparison of optimization performance with Bell
and Mehta profile.

Contraction shape Reθ Exit Plane Uniformity
Optimized 431.9 1%

Bell and Mehta 484.1 0.6%

not. The second measure is given as

log10 (std(Ux (x = L)))−2 . (7)

Results

An optimisation of the contraction shape was performed using
EGO. Because the method of initial point selection is random,
the EGO algorithm is non-deterministic. The EGO method was
run 3 times, and was able to find reasonable solutions in 33, 43
and 98 function evaluations. The calculation time of an individ-
ual calculation is quite small in this case, around 1 minute on a
Intel Core Duo T2400 processor. The large variability in func-
tion evaluations is probably due to difficulty in fitting a Kriging
model to the objective function including the penalty function.

In Doolan and Morgans, 2007 [2] a comparison of the per-
formance of EGO was made with other methods. Sequential
Quadratic Programming, a deterministic local optimiser using
finite difference gradients, was found to perform better than
EGO provided a good initial starting condition was known. DI-
RECT [3], a deterministic derivative free global optimiser, was
able to robustly find solutions at the expense of efficiency.
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Figure 3: Comparison of optimized profile with that of Bell and
Mehta.

Figure 3 compares the shape of the optimised contraction pro-
file with 5th order polynomial used by Bell and Mehta [1], and
Table 1 compares the performance of the two designs. The Bell
and Mehta design has thicker boundary layers, but more exit
plane uniformity. The optimised design trades off the exit plane
uniformity for thinner boundary layers.

One-dimensional flow with analytic loss function

In order to gain confidence in the accuracy of commercial CFD
codes it is often necessary to study simple flow problems with

known solutions. In this way issues such as mesh requirements,
choice of solver parameters and implementation of user-defined
subroutines may be investigated thoroughly before the code is
applied to more complex problems in which the solution is un-
known. This step is particularly important in optimisation prob-
lems as the solutions can often be complex and non-intuitive.

Consider the case of steady state, incompressible flow in a hor-
izontal channel of constant cross section. It is assumed the one-
dimensional flow occurs so the all quantities have uniform (i.e.,
constant) profiles at any x position. Under these assumptions
the continuity equation simplifies to

du
dx

= 0 (8)

and the momentum equation to

ρ
d (uu)

dx
=−d p

dx
+2µ

du
dx

+Sm (9)

where p, u, Sm, µ, and ρ are the pressure, velocity, momentum
source, fluid viscosity and density respectively.

A source/sink of momentum was used in whole computational
domain to include the analytical pressure drop relationship. The
analytical pressure drop per unit length had no physical mean-
ing and was selected solely as a test function for the optimisa-
tion algorithm and was given by

d p
dx analytical

= sin(4x)+ sin
(

8
3

x
)

+4x0.24 (10)

This function contains multiple local minima and requires a
global optimiser to find a robust solution, and is shown in Figure
5.

The source term applied in equation 9 was evaluated using the
following expression

Sm =−d p
dx analytical

(11)

Numerical method

The steady state equations (8 to 11) were solved using ANSYS-
CFX Version 11 [4] for the one-dimensional flow test problem
using the geometry shown shown in Figure 4. The parallel
plates are 10 m long with a plate separation of 0.05 m. A uni-
form hexahedral mesh of 2000 cells in the x direction, 32 cells
in the y direction and 1 cell in the z direction was used for all
simulations. One-dimensional flow can be implemented on a
two-dimensional geometry by applying a boundary condition of
zero shear stress at the channel walls. Uniform Dirichlet bound-
ary conditions were imposed at the inlet and a Neumann bound-
ary condition was imposed at the outlet. The fluid used for the
simulations was water with a density of 1000 kg/m3 and vis-
cosity of 1× 10−3 kg/ms. Convergence testing was applied to
all variables with a convergence target on the normalised resid-
uals of 1× 10−5. An initial guess of zero was applied to all
variables at the start of the simulations. As ANSYS-CFX uses a
false time-stepping method when solving steady state problems
a false timestep of 10000 s was used. The calculation time for
this simulation is approximately 5 minutes using a Intel Pentium
4 531 processor.

The objective function was to minimise the pressure drop per
metre between the velocity bounds of 0.05 m/s and 5 m/s.
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Figure 4: Channel geometry used for simulations.
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Figure 5: Optimisation results for analytic loss function.

Results

The optimisation on the objective function was tested using
EGO. The EGO method was run using an initial sampling of
5 points to build the surrogate (the shaded triangles in Figure 5.
A further 7 expensive objective function evaluations (the shaded
circles in Figure 5 were required to find the minimum pressure
drop per metre (the white circle in Figure 5 at a flow velocity
of 4.25 m/s within a 1× 10−4 m/s accuracy compared to the
analytical solution.

The results show repeated sampling around the global mini-
mum, and that the EGO sampling has managed to find both
local minima that are close in value to the global minimum (at
flow velocities of 0.05 m/s and 1.5 m/s) but avoid sampling at
the third local minimum (at a flow velocities of 3.7 m/s). Be-
cause the method of initial point selection is random, the EGO
algorithm is non-deterministic. The EGO method was run 3
times (each with an initial sampling of 5 points), and was able
to find reasonable solutions in 12, 13 and 16 function evalua-
tions.

Conclusions and future work

For the contraction optimisation, the EGO algorithm had dif-
ficulty with the penalty constraint method. Improvements to
the algorithm to implement constraints in different ways could
result in improved performance [11]. For this particular prob-
lem finite difference gradients were successful, SQP was able to
find a solution from a good initial solution (which is generally
known by the design) and this method would be recommended
for industrial practice. However this problem has proved use-
ful for testing the EGO algorithm because of its relatively short
computation time.

The one-dimensional flow case with the analytic loss effectively
“filters” a known analytic solution through a numerical discreti-

sation procedure. It also allows the interface between the solver
and the optimisation routine to be set up with a known solution.
The EGO algorithm is able to find the unconstrained global
minimum of the analytic function embedded in the ANSYS-
CFX commercial solver with relatively few function evalua-
tions. This should extend to multiple dimensions [9].

There are a number of improvements to be made to the EGO al-
gorithm for use on expensive objective functions. Currently the
algorithm is run for a fixed number of search iterations. A ro-
bust stopping criteria would be useful. Most expensive optimi-
sations do not need exact optima, and the search could proceed
on a grid of defined tolerance.

Overall the EGO algorithm has been found to perform well on
simple (computationally inexpensive) problems. It needs to be
tested on very computationally expensive problems, which the
authors intend to do in the near future.
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