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Abstract

Parasitic currents may develop in grid-based interface simula-
tions because of inaccurate representation of the surface forces
in the discretized equations. This is due to two causes : firstly,
inconsistent discretization of the surface tension force and the
pressure gradient, such that the force balance is not fulfilled for
a drop or a bubble at rest. Secondly, the problem is inaccurate
approximation of the curvature. The least you should demand
from a discretization is that it preserves a stationary solution. In
this article, it is shown that this can be accomplished by rewrit-
ing the interfacial force term in the momentum equation. Using
exact curvature, the exact solution for a drop is preserved to ma-
chine accuracy. In general, with this discretization, the calcu-
lation of the curvature is the only remaining source of spurious
currents. Contrary to common practice for the level-set method,
we stress that the curvature should be evaluated at the point on
the interface whose normal cross the discretization point, and
not at the gridpoint in the smeared-out region outside the inter-
face. In 2D, a simple geometrical argument may be used to find
the curvature at the interface, whereas in 3D we use extrapola-
tion normal to the interface to create the correct curvature field
in a small region around the interface.

Introduction

Interfacial flows with surface tension are encountered fre-
quently in nature and in industrial processes. Accurate mod-
eling of such flows is challenging due to the discontinuity of
material properties across the interface and the need to represent
the surface tension forces. The continuum surface force (CSF)
method of Brackbill et al. [1] has been employed extensively
to model surface tension forces for various fixed grid Cartesian
methods where both phases are treated as one field. The sur-
face tension forces acting on the interface are transformed to
volume forces in regions near the interface, leading to the ide-
ally discontinuous interfacial jump conditions being modeled as
smooth.

For interface methods, calculations often become difficult for
fluids with low viscosity when the surface tension force be-
comes large, i.e. for large curvature. Even in the absence of
external forces, e.g. a drop at rest in zero gravity, vortices may
appear in the numerical simulation close to an interface, de-
spite the absence of any external forces. These vortices are
called spurious or parasitic currents. Parasitic currents have
been observed for many interface simulation methods, like the
volume-of-fluid (VOF) method, level-set method, and for the
front tracking method. The parasitic currents may fail to disap-
pear with mesh refinement, leading to non-convergence of the
method. According to Scardovelli and Zaleski [2], the spuri-
ous currents become a serious problem when the Laplace num-
ber La = σρr/µ2 is larger than 106, which is approximately the
value for a 1cm water drop in air or 1cm air bubble in water.
The parasitic currents develop because of inaccurate represen-

tation of the surface forces in the discretized equations. This
is due to two causes: firstly, inconsistent discretization of the
surface tension force and the pressure gradient, such that force
balance is not fulfilled for a drop or a bubble at rest. Secondly,
the problem is inaccurate approximation of the curvature.

Renardy [3] and Francois et al. [4] have shown how to model
the surface tension force consistently when used in conjunction
with the VOF and the immersed boundary methods. In this ar-
ticle, the same idea is used for the CSF surface tension force in
the level-set method.

Governing equations

In the one field formulation, a single set of continuity and mo-
mentum equations are solved on a fixed grid. For two-phase
incompressible flow, the equations are

∇ ·u =0, (1)

ρ

(
∂

∂t
u+u ·∇u

)
=−∇p+∇ · (2µD)+ρg−σκnδ. (2)

Here D is the deformation tensor, σ is the surface tension coef-
ficient, κ is the curvature at the interface, n is the normal vector
at the interface and δ is a one-dimensional Dirac delta function
with the (signed) distance from the interface as its argument.
The momentum equation contains no approximations beyond
those in the usual Navier-Stokes equations. This equation is
valid for the whole field, even if density and viscosity change
discontinuously.

In level-set methods, the interface is represented as the zero
level set of a smooth function φ representing the distance from
the interface, conveniently defined positive on one side of the
interface and negative on the other. Using the CSF model, the
interface is smeared out over a finite area (2D)/volume (3D) by
employing a smeared-out delta function,

f1 =−σκnδ
ε(φ(r)). (3)

The one-dimensional delta function is defined as d
dx H(x) =

δ(x). The smeared-out Heaviside function as a function of the
signed distance to the interface can be represented as

Hε(φ) =


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1
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2π
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and the corresponding smeared-out delta function is

δ
ε(φ) =

dHε

dx
=
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Here the width of the smeared region is 2ε, typically ε = 1.5∆x
[5].

The curvature and normal vector to the interface that appear in
the surface tension term in the momentum equation are calcu-
lated from the level-set function. The normal vector is given
by

n =
∇φ

|∇φ|
, (4)

and the curvature is defined as

κ = ∇ ·n =
(

∇· ∇φ

|∇φ|

)
. (5)

With the CSF model, the numerical solution becomes continu-
ous at the interface even if the jump conditions imply that the
solution should be discontinuous. For example, surface tension
forces induce a discontinuous pressure across a fluid-fluid in-
terface, while the methods presented here smear the pressure
profile into a numerically continuous function. The density and
viscosity are also modelled as continuous functions:

ρ(φ) = ρ
−+(ρ+−ρ

−)Hε(φ) (6)

µ(φ) = µ−+(µ+−µ−)Hε(φ) (7)

where ρ−, µ− are for the fluid with φ < 0, and ρ+, µ+ are for
the fluid with φ > 0.

The interfacial movement is determined by the level set advec-
tion equation:

∂φ

∂t
+u ·∇φ = 0.

At every time step, the level-set function is reinitialized by a
few iterations of the equation

∂φ

∂τ
+w ·∇φ = S(φ0),

where

w =S(φ0)n =S(φ0)
∇φ

|∇φ|
(8)

and
S(φ0) =

φ0√
φ2

0 +∆x2
. (9)

Numerical method

The velocity and pressure are decoupled using a projection
method [6]. At each time step, the velocities are first integrated
as though the pressure term were absent and then a pressure
equation is solved to make the velocity divergence free. Let un

be the velocity at time step n. First, we semi-discretize the mo-
mentum equation (2), using forward Euler for the time deriva-
tive, and the pressure term is evaluated at step n+1. Then

un+1 = u∗− ∆t
ρ

∇pn+1 (10)

where

u∗ = u+∆t
(
−u ·∇u+

1
ρ

∇ · (2µD)+g− 1
ρ

σκnδ

)
. (11)

No superscript means that the terms are evaluated at time step n.
The reason why we use pn+1 instead of pn, is that with pn, un+1

will not satisfy continuity. Taking the divergence of equation

Figure 1: Staggered grid used in the discretization

(10) and stipulating that the new velocity field un+1 satisfies the
continuity equation, we have

∇·
(

1
ρ

∇pn+1
)

=
1
∆t

∇ ·un∗. (12)

The equations are discretized using the finite difference method
on a staggered grid. The scalar variables are defined in the cen-
ter of the cell, and the velocity components are defined at the
midpoint of the right and top cell-faces, as indicated in Figure
1. For the convective derivatives, we use WENO [5].

Balanced force discretization

For zero velocity and no gravity, the one field momentum equa-
tion (2) reduces to

∇p =−σκ∇I(r). (13)

Here we have used the identity nδ = ∇I, where I is the indicator
function defined in the following way:

I (r, t) = H(φ(r)) =
{

1, φ > 0
0, φ < 0 (14)

and n is a normal vector at the interface pointing into the phase
corresponding to φ > 0. For a drop or a bubble with constant
surface tension coefficient and curvature, the pressure is given
by

p =−σκI =−σκH(φ(r)), (15)

i.e. a jump σκ over the interface.

Numerically, the level-set method with the CSF model will not
give a sharp interface, but a profile normal to the interface like
a smeared Heaviside function. If we use

f2 =−σκ∇Hε(φ(r)) (16)

as the surface tension force, we see that a discrete pressure

pi, j =−σκHε(φ(ri, j)) (17)

will satisfy the discretized force balance in equation (13), if the
same discretization scheme is applied for both ∇Hε and ∇p.
For example, for the x-component of equation (13) discretized
at the u-discretization point, we have

pi+1, j− pi, j

∆x
=−σκ

Hε(φ(ri+1, j))−Hε(φ(ri, j))
∆x

. (18)
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Figure 2: The spurious currents are clearly visible in simulation
of water drop at rest

The discretized pressure equation will also be identically satis-
fied, using ordinary central differencing for all terms

∇·
(

1
ρ

∇pn+1
)

=−σκ∇·
(

1
ρ

∇Hε(φ(r))
)

. (19)

Satisfying discrete force balance for a stationary drop in zero
gravity should be a requirement for the discretization, since then
one of the sources for the spurious currents is removed. Hence
we recommend using

f2 =−σκ∇Hε(φ(r)) (20)

instead of the usual practice,

f1 =−σκnδ
ε(φ(r)) (21)

for the surface tension force in the level-set formulation. The
surface tension term f2 must be included if one or both of the
scalar points to the side of the u/v discretization point has |φ| ≤
ε.

As a numerical test, we have looked at a water drop with ra-
dius r = 0.012m, viscosity µl = 0.001137kg/(ms) and density
ρl = 1000kg/m3, suspended in zero gravity in air with viscosity
µg = 1.776 ·10−5 kg/(ms) and density ρg = 1.226kg/m3. The
surface tension is σ = 0.0727N/m. Since we use a 2D code, we
actually simulate the cross section an infinite cylinder. The ini-
tial pressure field is given by equation (17). To study spurious
currents and not difficulties like mass loss, we do not solve for
the level-set function. The water drop is put in the middle of an
enclosing box of 4cm× 4cm with no-slip boundary condition
at the walls. The system is integrated for 0.1s on a 100× 100
grid. With the curvature specified exactly as κ0 = −1/r, the
maximum spurious velocity component is 1.2 ·10−16 m/s, cor-
responding to the round-off error, proving that f2 indeed gives a
consistent discretization.

However, if f1 = −σκnδε is used, with κ = κ0 and with an ex-
act normal vector parallel to the line from the u/v discretization
point to the center of the drop, the maximum spurious velocity
component is 0.16m/s at the end of the simulation. A vec-
tor plot of the velocity is shown in Figure 2. Hence, f1 does
not give a consistent discretization, force balance is not fulfilled
even though the level-set function, the curvature and the normal
vector are given by the exact solution for a static drop.

Approximations to the curvature at the interface

To test the relative merits of f1 and f2 for a drop initially at
rest, but with p(0) = 0, the level set computation included, and

Table 1: Maximum spurious velocity component (m/s)
25×25 50×50 100×100 200×200

f1 0.099 0.11 0.13 0.11
f2a 8.0·10−3 6.2·10−3 3.0·10−3 9.6·10−4

f2b 1.0·10−3 4.7·10−4 1.6·10−4 4.0·10−5

f2c 1.6·10−3 8.9·10−4 4.7·10−4 2.4·10−4

with curvature and normal vector given by the level-set func-
tion. Otherwise, the settings are the same as before. With the
level-set method it is easy to calculate the curvature of any iso-
surface of the level-set function. In 2D, equation (5) is equiva-
lent to

κ =
φyyφ2

x −2φxφyφxy +φxxφ2
y(

φ2
x +φ2

y
)3/2

. (22)

In the implementations of the level-set method using the CSF
model that we have seen, it seems to be standard practice to use
the curvature evaluated at the discretization point instead of the
curvature at the interface. This will introduce an error, and here
we instead try to find the curvature at the point of the interface
“corresponding” to the discretization point. In 2D, we can use
a simple geometrical argument since the level curves can be
viewed locally as parts of concentric circles, and the curvature
at the interface is given by

κ0 ≈
1

1/κ−φ
. (23)

In 3D this will not work, since then there are two independent
principal radii of curvature. What we want is the curvature of
the interface extrapolated in the normal direction at both sides
of the interface. This can be accomplished in the same manner
that the interfacial velocity is extended in the normal direction
[5]. For every time step, we calculate the curvature field of the
iso-surfaces in a narrow region of the interface. By solving the
hyperbolic equation

∂κex

∂τ
+S(φ)n ·∇κex = 0, (24)

with κex(τ = 0) = κ to steady state, the curvature at the inter-
face is extended in the normal direction, and κex is used for the
curvature in the surface tension calculation.

In Table 1, the maximum spurious velocity at the end of the sim-
ulation is shown for 4 implementations of the surface tension
force. In the first row, the result for f1 with curvature and nor-
mal vector calculated at the discretization point, is shown. The
rows below are for f2, but with different curvatures estimates.
Case a is with curvature calculated at the discretization point,
case b uses the approximation to the curvature on the interface
given by equation (23), and case c uses extrapolated curvature
given by the solution of equation (24).

Again, f1 performs poorly, and there is no improvement as the
grid is refined, and hence no convergence with f1 for such a high
Laplace number. For f2, all curvature estimates gives less spu-
rious currents as the grid is refined. For f2, the mass loss/gain
is negligible, but for f1, it is still 1.6% on the finest grid. In
Fig. 3, the pressure has been plotted for the cross-section y = 0.
For f2, there is hardly any difference when various curvature
estimates are used, so only the solution with curvature esti-
mated as in equation (23) is shown. f2 gives the correct pressure
jump ∆p = σ

r = 6.06Pa, and a constant pressure inside the drop,
whereas f1 does not.
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Figure 3: Plot of pressure, cross section through the middle of
the drop. f2 gives the correct pressure jump, and a constant
pressure inside the drop, whereas f1 does not. A 100×100 grid
has been employed.

Table 2: Area change after 0.05s for a falling water drop
40×60 80×120 160×240

f1 7.4% 6.7% 4.4%
f2b 0.23% 0.21% 5.4·10−2%
f2c 0.16% -0.16% -0.24%

Falling drop and rising bubble

First we consider a water drop of radius 1/300m in a
[−0.01m,0.01m]× [−0.02m,0.01m] box filled with air, at or-
dinary gravity. The drop is released at the origin and the change
of area is checked after 0.05s. The change in area is shown
in Table 2, for f1 with curvature and normal vector calculated at
the discretization point, for f2b with approximation to the curva-
ture on the interface given by equation (23), and for f2c which
uses the extrapolated curvature given by the solution of equa-
tion (24).

The results look very encouraging, f2b give far better mass
conservation than f1. However, for an air bubble with ra-
dius 1/300m released at the origin in a [−0.01m,0.01m]×
[−0.01m,0.02m] box filled with air, there appears to be no im-
provement using ∇H instead of nδ in the surface tension term,
as can be seen in Table 3.

Colliding drops

We consider head-on collision of two 0.75cm diameter water
drops in air, in zero gravity. The drops are released 1.5cm apart
with a velocity ±0.1m/s. The change in area is checked after
0.4s, then the drops have coalesced and undergone some pe-
riods of oscillation. In Table 4, the respective area losses are
given for the standard implementation of the CSF surface ten-
sion force, f1, where curvature and normal vector are calculated

Table 3: Area change after 0.05s for a rising air bubble
40×60 80×120 160×240

f1 -8.4% -3.8% 0.18%
f2b -7.5% -3.7% -1.3%
f2c -7.9% -3.6% -1.5%

Table 4: Area change for coalescing drops
60×60 120×120 240×240

f1 30.% 28.3% 18.4%
f2b -1.2% 0.80% 0.64%

for the iso-surface going through the discretization point, and
for f2b, which is the “balanced force” formulation of the surface
tension force, with the curvature evaluated at the interface, us-
ing equation (23). Since the Laplace number is high here, it is
not unexpected that the standard implementation gives a horri-
ble area loss. However, f2b gives excellent results.

Conclusion

The use of a balanced force formulation for the CSF surface
tension force together with the curvature evaluated at the inter-
face, seems promising for reducing spurious currents and mass
loss in level-set calculations at high Laplace numbers.
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