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Abstract  
Natural convection in a triangular enclosure induced by solar 
radiation is simulated and analyzed. The numerical simulation 
reveals three possible distinct flow regimes in the enclosure.  It 
also reveals the variations of the dominant heat transfer mode and 
the flow status with the horizontal position along the wedge. The 
whole domain can be divided horizontally into several regions 
according to the dominant mode of heat transfer. For small 
Rayleigh numbers, heat transfer over the entire domain is 
dominated by conduction. For medium Rayleigh numbers, there 
are two distinct regions. Heat transfer in the near shore region is 
dominated by conduction. As the distance from the shore 
increases, stable convection becomes the dominant mode. The 
region dominated by stable convection expands with increasing 
Rayleigh number. For high Rayleigh numbers, the whole region 
can be divided into three distinct regions where the dominant 
mode of heat transfer changes from conduction to stable 
convection and then to unstable convection as the distance from 
the shore increases. The region of flow instability also expands 
with increasing Rayleigh number.   
 
 
Introduction  
Natural convection in littoral regions plays an important role in 
the transport of nutrients and pollutants across reservoirs, lakes 
and other geophysical water bodies. A triangular geometry has 
been assumed to represent the bathymetry variation in the littoral 
regions. Since an approximately equal flux of heating or cooling 
at the surface is distributed over different depths of water, the 
water will become either warmer or cooler than its horizontally 
neighbouring regions. The horizontal temperature gradient then 
results in a horizontal density gradient, which is an important 
driving force of convective flows in natural water bodies.  
      
Field observations [1,7] have provided evidence demonstrating 
the significance of this horizontal buoyancy driven flow induced 
by differential water depths. The functioning of the thermal 
siphon substantially reduces the time required to replace the 
water in sidearms of reservoirs.  
 
During the daytime, the water body absorbs solar radiation in an 
exponentially decaying manner with the water depth according to 
Beers’ law. Typically, in natural water bodies, most radiation is 
absorbed between the surface and a depth of about 1-2 meters, 
resulting in a shallow surface layer with water much warmer than 
the underlying water. Near the shore where the depth of the water 
body is less than the penetration depth, two models have been 
adopted for the absorption of solar radiation by the water. One 
model is that all of the radiation was absorbed and uniformly 
distributed over the local water depth. This model was proposed 
by [3] in an analysis of diurnal cycles, which leads to an 
increasing rate of heating with the decreasing water depth. The 
other model [4] approaches the issue in a more physically 
realistic way. It took into account the exponential decaying 
absorption of solar radiation described by Beer’s law, and any 
residual radiation reaching the bottom was assumed to be 
absorbed by the bottom, and the absorbed energy re-emitted as a 

bottom heat flux, which was a potential source for Rayleigh-
Benard instability. This model was also adopted in [6], in which a 
scaling analysis classified the overall flow at different Rayleigh 
numbers into three flow regimes, namely, a conductive, a 
transitional and a convective regime. The scaling in [6] provides 
an overall description of the flow status over the whole domain at 
different parametric settings. However, the scaling did not 
capture the variation of the flow status and heat transfer with the 
horizontal position, which may be resulted from the changing 
water depth.  
 
The numerical simulation presented in this paper focuses on the 
variation of the dominant mode of heat transfer and the flow 
status with the horizontal position. Identifying the different flow 
regions will provide important insights into the exchange flows 
occurring at different sections of the sidearm since the 
transportation processes vary with the horizontal position.  
 
Model Formulation  
 
 
 
 
 
 
 
 
 
 
 

Figure 1 Geometry of the flow domain 
 
The daytime circulation in the sidearm is modelled with a wedge 
with a bottom slope of A and a depth of h (Fig 1). With 
Boussinesq assumption, the Navier-Stokes and energy equations 
governing the flow and temperature evolution within the wedge 
can be written as: 
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where u  and υ  are the velocity components in the horizontal 
and vertical directions, x  and y  are the horizontal and vertical 
coordinates originating from the tip; T  is the fluid 
temperature; p is the pressure. The density, kinematic viscosity, 
thermal diffusivity and thermal expansion of the fluid at the 
reference temperature 0T  are represented by 0ρ , v , k and β  
respectively. ),,( tyxS  represents the internal heating source due 
to absorption of solar radiation. The radiation intensity at a 
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particular wavelength decrease with the water depth according to 
Beer’s law: 

00 ≤= η yeII y  
 

(5) 
 

where 0I  is the radiation intensity at the water surface, η  is the 
attenuation coefficient of water which is a function of the wave-
length of the incident radiation and the turbidity of water [5]. The 
attenuation coefficient is often assumed to be constant in 
applications to simply the problem, and this assumption is also 
adopted here. Therefore, the source term in equation (4) is given 
by:  

00 ≤≤−η= η yAxeHS y      (6) 
where )( 000 pCρIH = , and pC is the specific heat of water at 
the reference temperature.  
 
The internal source term in equation (6) generates a stable 
stratification in the water column.  For the shallow region, there 
will be a considerable amount of radiation reaching the bottom. It 
is assumed that all the radiation reaching the bottom is absorbed 
by the bottom, and the absorbed energy is reemitted in the form 
of a boundary heat flux. The source that generates fluid motion 
comes from the bottom heat flux, which also creates a potentially 
unstable temperature gradient. The thermal boundary condition of 
the bottom surface can thus be defined as: 
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where n̂  is the direction normal to the sloping bottom.  
 
In the following numerical simulations, rigid non-slip velocity 
boundary conditions ( 0== υu ) are assumed for the water 
surface, the end wall, and the bottom.  An adiabatic temperature 
condition is assumed for the water surface and the end wall. 
Apart from creating an additional viscous layer near the surface, 
the non-slip boundary condition is not expected to affect the 
overall flow feature.   
 
There is no flow or heat transfer in the enclosure before the 
radiation starts. As soon as the radiation is initiated, the water 
temperature starts to increase due to the absorption of the 
radiation entering the water body. Due to the effect of the bottom 
heat flux specified in equation (7), a thermal boundary layer 
develops along the bottom slope. The thickness Tδ  of the 
thermal boundary layer can be derived from a balance between 
the unsteady and diffusion terms in the energy equation: 

2/1)(~ ktTδ  (8) 

Hence the temperature scale in the bottom thermal boundary 
layer is given by 
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Numerical Results  
The governing equations (1)-(4) along with the specified 
boundary and initial conditions are solved numerically using a 
finite volume method. The SIMPLE scheme is adopted for 
pressure-velocity coupling; and a third-order discretization 
scheme is applied for spatial derivatives. A second-order implicit 
scheme is applied for time discretization in calculating the 
transient flow. The geometric and flow parameters used in the 
simulations are: 1.0=A , 06.0=h m, 2=η , and thus the 
problem falls into the shallow-water case for which η<1h . 
Prandlt number Pr  is defined as kv=Pr , and 7Pr =  is 
assumed for the water. The intensity of natural convection inside 

the wedge depends upon the Grashof number (Gr) or the 
Rayleigh number (Ra), which are defined as: 

kv
hHg

Gr 2

4
0β

=  (10) 

GrRa ⋅= Pr  (11) 
 
In order to simulate the flow under different radiation intensities, 
the Grashof number in the simulations varies over a wide range 
from 10 to 2×106. It will be shown later that this range of the 
Grashof numbers covers all the possible flow regimes for the 
specified problem.  
 

 
(a) Temperature contour at the steady state for Gr=10 

 

 
(b) The horizontal heat transfer rate at the steady state averaged 
over the local water depth at different horizontal locations for 

Gr=10   
 
Figure 2 Temperature contours and horizontal heat transfer rate at 
a typical low Grashof number at which conduction dominates the 
whole flow domain 
 
Figure 2 shows the typical feature of heat transfer for small 
Rayleigh numbers. At the steady state, the temperature contours 
are vertical over virtually the whole domain (Figure 2 (a)), which 
indicates that conduction dominates heat transfer.  The horizontal 
heat transfer rate is averaged over the local depth and is defined 
as:  
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where T  is the difference between the local temperature and the 
average temperature over the whole domain. The term uT , 

x
Tk
∂
∂

−  specify the horizontal heat transfer generated by 

convection and conduction respectively. Figure 2 (b) suggests 
that conduction is the dominant means of heat transfer over the 
whole domain at this Grashof number. The bottom thermal 
boundary layer starts to grow due to heat transfer from the 
bottom boundary to the interior as soon as the radiation is 
initiated. Since the Grashof number is small, convection is weak, 
and is insufficient to balance conduction. The amount of heat 
conducted into the boundary layer will be always larger than that 
convected away. Therefore, the thermal boundary layer keeps 

(m) 

(m) 

407



growing until it encompasses the entire flow domain. In this case, 
no distinct thermal boundary layer can be identified at the steady 
state.  

 
(a) Gr=1000 

 
(b) Gr=5000 

 
Figure 3 Temperature contours at the steady state for Grashof 
numbers in the medium range in which conduction dominates in 
the tip region and convection dominates in deeper regions. 
 
As the Rayleigh number increases, the scenario becomes 
different. The bottom thermal boundary layer starts to grow by 
conduction after the radiation is initiated.  As time goes on, 
convection is getting stronger and becomes increasingly 
important. At a certain point of time, heat conducted into the 
thermal boundary layer is balanced by that convected away. The 
thermal boundary layer then ceases to grow, and the flow 
becomes steady. If at this time, the bottom thermal boundary 
layer has not grown to the full local water depth, then a distinct 
thermal boundary layer is present. Figure 3 shows the 
temperature contours at the steady state at two Grashof numbers 
Gr = 1000 and 5000. It is seen in figure 3 that, near the tip region, 
the isotherms are vertical, implying the dominance of conductive 
heat transfer in that region. Further away from the tip, the 
isotherms above the bottom tilt upwards, and the degree of tilting 
increases with the distance from the tip.  This temperature 
structure suggests that convection becomes more important as the 
distance from the tip increases. The curvature of the temperature 
contours also suggests the existence of a distinct bottom thermal 
boundary layer.  
 
For regions near the tip, since the local water depth is small, the 
thermal boundary layer reaches the top surface before convection 
becomes strong enough to balance conduction. Therefore, the 
thermal boundary layer is indistinct near the tip. As the distance 
from the tip increases, it takes longer for the thermal boundary 
layer to grow to the top surface. Before the thermal boundary 
layer reach the local top surface, convection become sufficiently 
strong to balance conduction at a critical time ct , and the thermal 
boundary layer ceases to grow and remains distinct.  A 
comparison of Figures 3(a) and (b) indicates that, as the Grashof 
number increases, the region dominated by convection increases 
and expands toward the tip end. The curvature of isotherms also 
increases with the Grashof number, signifying an increasing flow 
velocity.  
 
Figure 4 shows the horizontal heat transfer rate (averaged over 
the local depth) by conduction and convection respectively. The 
trend revealed in the temperature contours in Figure 3 is further 
verified in Figure 4. In this figure, the point at which conduction 
heat transfer is equal to convection heat transfer identifies the 

critical horizontal position ax = , which separates the regions 
with and without a distinct thermal boundary layer. This 
horizontal position also marks the dividing point where the 
dominated mode of horizontal heat transfer switches between 
conduction and convection. As the Grashof increases, the 
dividing point shifts further toward the tip, and convection 
dominates for a larger region.  

 
(a) Gr=1000 

 
(b) Gr=5000 

Figure 4 The horizontal heat transfer rate at the steady state 
averaged over the local water depth at different horizontal 
positions for Grashof numbers in the medium range.   
 
A series of numerical simulations have been conducted with 
medium Grashof numbers of Gr = 500, 800, 1000, 3000, and 
5000, respectively. The calculated dividing point is plotted 
against the Grashof number in Figure 5. The result shown in 
figure 5 confirms the above observation with regard to the shift 
of the dividing points toward the tip as the Grashof number 
increases.  

 
Figure 5 Horizontal dividing point at different Grashof number, 

Gr=500, 800, 1000, 3000, 5000 
 

The local Rayleigh number for a fluid layer heated from below is 
defined as [2]: 
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Substituting (8) and (9) into (13), we have 
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Instabilities set in when the local Rayleigh number is larger than 
the critical Rayleigh number cRa [2]. Although the local Rayleigh 
number is a function of time, there is a limit for the growth of the 
local Rayleigh number with time. When the flow reaches its 
steady state at ct , the thermal boundary layer ceases to grow. At 
this time ct , bT  and Tδ both reach their maximum values, and 
thus TRa  also reaches its maximum value )( cT tRa . If this value 
is still less than the critical value cRa , the flow will become 
steady without any instability. However, if the Grashof number is 
sufficiently large so that )( cT tRa > cRa , instability sets in after 

time Bt  ( Bt < ct ) when TRa  becomes larger than cRa .  

 
(a) Gr=105 

 

(b) Gr=3*105 

 
(c) Gr=106 

Figure 6 Streamlines at the steady state for high Grashof numbers.  
 

Figure 6 shows the streamlines of the steady state flows for three 
different Grashof numbers which are sufficiently high to generate 
instability: Gr = 105, 3×105, and 106. The wavy structure above 
the bottom surface of the wedge is a result of flow instability. It is 
clear that the instability occurs over a certain range of the flow 
domain near the far end. The range and intensity of the instability 
increase with the Grashof number. This feature was confirmed 
quantitatively in Figure 7. 
 
Figure 7 shows the calculated horizontal heat transfer rate 
averaged over the local depth at the steady state. Assuming the 
horizontal position where conduction equals convection is ax = , 
and the position where the wavy structure starts is bx = , there 
are three distinct regions dominated by different modes of heat 
transfer: for ax < , conduction dominates over convection in  the  

 
(a) Gr=105 

 
(b) Gr=3*105 

 
(c) Gr=106 

Figure 7 The horizontal heat transfer rate at the steady state 
averaged over the local water depth at different horizontal 
positions for high Grashof numbers.   
 
horizontal heat transfer; for bxa << , stable convection 
dominates; and for bx > , flow instability occurs and unstable 
convection dominates.  The unstable convection corresponds to 
the wavy structure in the streamlines in Figure 6. In the near tip 
region ( ax < ), the thermal boundary layer grows over the entire 
water depth before convection becomes significant, resulting in 
an indistinct thermal boundary layer. In the region bxa << , 
after the time ct , convection balances conduction, and the 
thermal boundary layer ceases to grow and remains distinct. In 
this region, the local Rayleigh number has also reached its 
maximum value at time ct . Since the maximum local Rayleigh 
number in this region is less than the critical Rayleigh number 

cRa , the boundary layer is stable. In the region bx > , since the 
critical time tB required for the local Rayleigh number to grow 
higher than Rac is shorter than the steady-state time tc  required 
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for convection to balance conduction, the thermal boundary layer 
becomes unstable. As the Grashof number increases, the region 
with flow instability expands toward the tip, and the intensity of 
the instability increases with the Grashof number. 
 
Summary  
The results of present numerical simulations have revealed the 
variations of the dominant mode of heat transfer and the flow 
status with the horizontal position along the wedge. This series of 
simulations has shed light on various flow scenarios at different 
Rayleigh numbers.  For small Rayleigh numbers, conduction 
dominates the horizontal heat transfer over the whole domain 
with no distinct thermal boundary layer at the steady state. For 
medium Rayleigh numbers, a dividing point, where conduction 
heat transfer is equal to convection heat transfer at the steady 
state, splits the flow domain into two distinct regions: conduction 
dominates in the region close to the tip where isotherms are 
approximately vertical; convection is the dominant mode of the 
horizontal heat transfer in the deeper region, and the thermal 
boundary layer is distinct. The region dominated by convection at 
the steady state expands with the Rayleigh number. For high 
Rayleigh numbers, there are two dividing points: one between 
conduction and stable convection regions, and the other between 
stable and unstable convection regions.  In the near tip region, 
conduction   dominates,   and   the   thermal   boundary   layer   is  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

indistinct. In the middle region, convection dominates and the 
thermal boundary   layer   is   distinct   and   stable. In the deep 
region, the thermal boundary layer is unstable, and heat transfer 
is dominated by unstable convection.  
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