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Abstract

Multiple mapping conditioning (MMC) is used to model local
extinction and reignition phenomena in homogeneous, isotropic
decaying turbulence. It is recognized that mixture fraction alone
is not sufficient to account for turbulent scalar fluctuations and
that more than one reference variable needs to be introduced.
We introduce a second reference variable with a dual charac-
ter: the second variable is a dissipation-like variable that em-
ulates the intermittent behaviour of scalar dissipation and it is
therefore the cause for local extinction in our modelling. How-
ever,the second variable is also used to match the scalar variance
of a reaction progress variable to ensure consistency in tempera-
ture flucutations of the MMC model and Direct Numerical Sim-
ulations. The resulting model provides a (fully) closed formula-
tion for the modelling of local extinction and re-ignition events
and predictions of the joint probability distribution of mixture
fraction and sensible enthalpy, of reactive species and of the
global conversion rates are good and clear improvments over
conventional mixture fraction based methods that use mixture
fraction as the only conditioning paramenter.

Introduction

One of the major challenges for turbulent combustion modelling
is the accurate description of the turbulence-chemistry interac-
tions that can determine chemical conversion rates and flame
stability. The chemical source term may be strongly affected
by turbulence, but usually appears in unclosed form in the av-
eraged scalar transport equations and needs modelling. Com-
putational methods for non-premixed combustion can be based
on the mixture fraction concept where turbulent fluctuations
of the reactive scalars are linked to the turbulent fluctuations
of mixture fraction. The conditional moment closure (CMC)
model [12] is one of these approaches. Here, transport equa-
tions for the reactive species conditionally averaged on the mix-
ture fraction, Z, are solved. Often, the fluctuations aroundthe
conditional means are small and the reaction term can easilybe
closed using first moments. CMC has been applied to a variety
of flames [21, 8, 6, 18] with some success.

The applicability of first order closures is, however, limited
to flames where fluctuations around the conditional mean are
small. This is certainly not given in flames with local extinction
and re-ignition where a strong dependence on mixture fraction
ceases to exist and the flame structure would need to be de-
scribed by at least two variables and their joint PDF: the mixture
fraction and a suitably defined reaction progress variable.Kro-
nenburg [14] showed that fluctuations of reactive scalars corre-
late well with fluctuations of mixture fraction and normalised
sensible enthalpy,̂hs, in flames with moderate to significant ex-
tinction and re-ignition and that double conditioning leads to ac-
curate first order closures of the chemical source term. Double
conditioning approaches have, however, a major shortcoming:
the closures of the doubly conditioned dissipation terms and of
the joint PDF of sensible enthalpy and mixture fraction. Pre-

sumedβ-PDFs for the conditional sensible enthalpy,P(ĥs|Z),
may be acceptable approximations, however, the computation
of the conditional variance of sensible enthalpy,〈ĥ′′2s | Z〉, suf-
fers from inacurate modelling often based on laminar flamelet
assumptions. In addition, accurate models for doubly condi-
tioned scalar dissipation do not exist.

Klimenko and Pope [13] suggested multiple mapping condi-
tioning (MMC) for turbulent reacting flows. MMC is a general-
ized mapping closure that shares some characteristics withjoint
PDF [19] and CMC methods and both, stochastic and deter-
ministic implementations are possible [11]. Turbulent fluctua-
tions (and species) are divided into “major” and “minor” group-
ings. The fluctuations of the major scalars are not restricted and
they are modelled using a set of stochastic reference variables.
In deterministic MMC minor fluctuations are not permitted and
the minor scalars can therefore fluctuate only jointly with the
major scalars which is equivalent to a low-dimensional mani-
fold in scalar space that is allowed to vary with time and space.
Therefore, deterministic MMC(Z), where mixture fraction is the
only major scalar, is equivalent to CMC(Z) when the latter is
combined with generalised mapping closure to ensure consis-
tency between the PDF for Z and its dissipation. Here and in
the remainder of the paper, the terms in the brackets following
the acronyms MMC or CMC indicate the conditioning scalars.
In MMC, functional dependencies between a reference space
with a known turbulence distribution and the physical composi-
tion space are sought and the number of the major scalars,nmaj,
therefore determines the dimension of the reference space.

Different implementations of MMC have been applied to cases
of extinction and reignition in homogeneous, isotropic, decay-
ing turbulence [24, 3, 2]. Wandel and Klimenko [24] used prob-
abilistic MMC with one-step chemistry and a single reference
variable with some success. Cleary and Kronenburg [3] use
a single mixture-fraction-like reference variable with four-step
chemistry and scalar dissipation fluctuations that cause local ex-
tinction were modelled via up to three dissipation-like refer-
ence variables [11]. Unfortunately, agreement with DNS data
was far from being perfect, and the complexity and compu-
tational demands due to the introduction of four conditioning
variables may not be justified. Crucial for the failure to predict
extinction and re-ignition events accurately is -as in the case
of CMC(Z,N), see reference [1]- the weak correlation between
the chemical source term (or temperature) and scalar dissipa-
tion during re-ignition. In contrast to MMC(Z,N), MMC with
reference variables for mixture fraction and sensible enthalpy,
MMC(Z, ĥs), gives excellent predictions of all major species
and captures the degree and timing of extinction and re-ignition
rather well. However, MMC(Z, ĥs) does not account for the
physical mechanism that is the driving force for extinctionto
occur: the scalar dissipation fluctuations. MMC(Z, ĥs) does not
generate fluctuations around the conditional mean and condi-
tional fluctuations must be imposed. In other words, if all re-
active scalars are initialized as function of mixture fraction, the
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reactive scalars will remain functions of mixture fraction. These
functions can vary with time and space, but no conditional fluc-
tuations will be generated and MMC would therefore be equiva-
lent to first order CMC(Z). This led to a hybrid approach where
a shape for the conditional PDF was presumed and an addi-
tional transport equation for the conditional variance of sensi-
ble enthalpy needed to be solved [2]. The major advantage of
’hybrid’ MMC( Z, ĥs) over CMC(Z, ĥs) is therefore the implicit
closure of the doubly conditioned dissipation terms, however,
uncertainties with respect to the modelling of the joint PDFre-
main.

The introduction of an MMC model with reference variables for
mixture fraction, scalar dissipation and sensible enthalpy might
be considered as the next logical step, but this approach will
still fail in generating fluctuations in sensible enthalpy space.
Instead, it needs to be recognised that scalar dissipation fluc-
tuations and the generation of fluctuations in sensible enthalpy
space are linked and need to be correlated. In the next section
we will present a modification of MMC(Z, ĥs) where fluctua-
tions with respect to means conditioned on the mixture fraction
are generated within the model by attributing a ’dual’ charac-
ter to a reference variable. The second reference variable is
dissipation-like, it however represents sensible enthalpy. We
then give a brief description of the DNS database that is used
for the validation of the model. Finally, the performance ofthe
implicit closures for the joint PDF, for the doubly conditioned
dissipation of mixture fraction and sensible enthalpy and for the
conditional variances are assessed.

Multiple mapping conditioning

The MMC transport equation for the evolution of the mapping
function,X(ξ), is given by [13]

∂XI

∂t
+U ·∇XI +Ak

∂XI

∂ξk
−Bkl

∂2XI

∂ξk∂ξl
= WI . (1)

The upper case subscriptI denotes all scalars (major and mi-
nor), the lower case subscriptsk andl are for the major scalars
only and the vectorξ represents the reference space. We em-
phasise that a single equation governs the evolution of mapping
functions for all scalars of interest and no differentiation is made
for major or minor scalars. The solution of equation (1) ensures
that the joint PDF ofX(ξ) satisfies the PDF transport equation
of the joint PDF of all scalars,Pφ. Note that minor fluctuations
are omitted, minor scalars are therefore conditionally averaged
on major scalars and Klimenko and Pope [13] showed that the
solution of equation (1) satisfies the joint PDF transport equa-
tion for the major scalars and the CMC transport equations for
the minor scalars.

First order closure of the conditionally averaged chemicalreac-
tion term,WI = WI (ξ), follows from the omission of the minor
fluctuations and closures for the MMC coefficients of velocity,
drift and diffusion (U, Ak andBkl) are obtained through neces-
sary consistency with the joint reference space PDF transport
equation

∂ρ̄Pξ
∂t

+∇ ·
(

Uρ̄Pξ

)
+

∂Akρ̄Pξ
∂ξk

+
∂2Bkl ρ̄Pξ

∂ξk∂ξl
= 0. (2)

The coefficients can be determined for any assumed form of the
reference PDF. For simplicity, we use stationary Gaussian PDFs
with zero mean and unity variance and the coefficients can then

be obtained from

U = U(ξ;x,t) = U(0) +U(1)
k ξk (3)

Ak =−
∂Bkl

∂ξl
+Bklξl +

1
ρ̄

∇ ·
(

ρ̄U(1)
k

)
(4)

U(0) = ṽ (5)

U(1)
k 〈ξ∗kX∗

i 〉= ṽ′φ′

i . (6)

In the abovev is the flow velocity, the asterisk denotes stochas-
tic quantities and the term in angular brackets is the ensemble
mean. The reader is referred to Klimenko and Pope [13] for
more details on the derivation of equation (1) and on the con-
straints that govern the form of the MMC coefficients.

The key to successful MMC modelling is the correct selection

of the diffusion coefficientsBkl andU(1)
k . In homogeneous tur-

bulenceU(1)
k ≡ 0, andBkl is the only parameter that can be cho-

sen in the present study to match scalar statistics with DNS.The
diffusion coefficients in equation (1) are related to the Favre av-
eraged scalar dissipation tensor by

〈
Bkl

∂Xi

∂ξk

∂Xj

∂ξl

〉
= Ñi j . (7)

Klimenko [9, 11] suggested the use of dissipation-like vari-
ables to emulate the effects of scalar dissipation fluctuations
that are crucial for the modelling of extinction and re-ignition
events. Scalar dissipation fluctuations are expected to have
a log-normal distribution and their effect on the evolutionof
scalar quantities can be approximated by modelling the diffu-
sion coefficient of the mixture fraction reference variableas

B11 = B̄11ϕ(ξ2;x,t). (8)

Here,ξ1 represents mixture fraction space andξ2 represents the
dissipation-like variable. The function

ϕ = exp(cαξ2−c2
α/2) (9)

describes the fluctuations ofB11 around its mean valuēB11.
Since the reference variableξ2 is normally distributed,B11 will
have a log-normal distribution with the mean̄B11. The second
moment ofϕ is

〈(ϕ)′2〉= exp(cαcα)−1. (10)

Following Klimenko [9], the instantaneous mixture fraction
scalar dissipation is related to its conditional mean byN11 ≈
〈N11 | η〉ϕ which gives

cαcα = ln

(
〈N′2

11 | η〉
〈N11 | η〉2

+1

)
. (11)

It has been pointed out above that the validity of the source term
closure in equation (1) requires small fluctuations of the minor
scalars with respect to thenmaj-dimensional manifold. It has
been shown previously [14] that fluctuations around the condi-
tional averages are small if the conditioning scalars are mixture
fraction and sensible enthalpy while they are relatively large if
reactive species are conditioned on mixture fraction and scalar
dissipation. The dilemma is clear: it is desirable to haveξ2 rep-
resent sensible enthalpy, while we would also needξ2 to repre-
sent a dissipation-like variable to generate fluctuations around
the (singly) conditioned mean. These two requirements do not
have to be exclusive. It is important to realize that equation (7)
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determines which quantity is represented by the reference vari-
able. Matching of the diffusion coefficientBkl with the dissipa-
tion Ñi j ensures the correct level of (unconditional) scalar fluc-
tuations of scalarsi and j . Any reference variableξ2 may adopt
the character of a dissipation-like variable ifB11 is modelled by
equation (8). The physical quantity that is represented byξ2 is
irrelevant. We can now exploit the strong negative correlation
between conditional temperature fluctuations and fluctuations
in scalar dissipation during the extinction process. Largeval-
ues forN will lead to low temperatures due to the large strain
imposed on the burning flamelet. We therefore propose the fol-
lowing modelling for the diffusion coefficientsBkl :

B11 = B11exp(cαξ2−c2
α/2) (12)

B12 = B12 (13)

B22 = B22, (14)

where the overbar denotes averaged values that can be obtained
from equation (7). Note that the averaged values are by defi-
nition independent ofξi while the exponential dependency af-
fects the averages for the gradients inξ1-space that need to be
computed for equation (7). The correlation between dissipation
and temperature fluctuations decreases with increasing degree
of extinction andcα → 0 for complete extinction. A simple cor-
relation function,fcorr, that describes the degree of extinction
can be based on the mean sensible enthalpy (or temperature)
at stoichiometric and we employfcorr = −〈ĥs | η = Zst〉. The
parametercα is therefore modelled as

cα = fcorr ln

(
〈N′2

11 | η〉
〈N11 | η〉2

+1

)1/2

. (15)

As in reference [2], the scalar field for this specific MMC
model isφ = {Z, ĥs,Y1,Y2, ...,Yns} whereĥs =

R T
To

cpdT/hs,max
is the normalized sensible enthalpy andns is the number
of chemical species considered. The sample space isψ =
{η,ζ,y1,y2, ...,yns} whereη andζ are the sample space vari-
ables for the two major speciesZ andĥs and lower-caseyα are
used for the minor scalars. The reference space has two dimen-
sions withξ1 andξ2 emulating the turbulent fluctuations ofZ
andĥs respectively. All scalars are initialized inξ1− ξ2-space
as described in [2].

Numerical simulations

Modelling results are compared to DNS of hydrocarbon com-
bustion in homogeneous, isotropic, decaying turbulence. The
DNS database is identical to DNS described in Kronenburg and
Papoutsakis [16] and used for validation in references [3, 2].
The velocity and scalar fields are solved using a pseudo-spectral
method implemented by Kerr [5] and the turbulence field can be
characterised by an initial Taylor Reynolds number ofRe0λ = 54,
an initial integral length scale ofl0 = 1.11 and a corresponding
time scale ofτ0 = 1.08. All quantities are non-dimensionalized.
Non-premixed combustion where fuel and oxidizer are segre-
gated initially, will be simulated. The mixture fraction field is
initialized following Mell et al. [17], and all reactive scalars are
then initialized as functions of mixture fraction where thefunc-
tional dependence is obtained from independent flamelet com-
putations with a scalar dissipation rate that is representative for
the initial conditions of the mixture fraction field. Following
Swaminathan and Bilger [22] the fuel and air composition (by
weight) are 15%/34%/51% CH4/N2/Ar and 30%/70% O2 and
N2, respectively. The stoichiometric mixture fraction is 1/3and
all simulations are performed on 2563 grid nodes.

We use a four-step mechanism to approximate the combustion
of methane with air and the simplified kinetics scheme by Jones
and Lindstedt [4] allows for simulating finite rate chemistry
with local extinction and re-ignition. Transport equations need
to be solved forZ, CH4, CO, H2 andĥs. The Prandtl number is
set toPr = 0.7 and unity Lewis numbers are assumed. All other
species (O2, CO2, H2O, Ar, N2) can then be determined from
the element mass balances. The minimum sensible enthalpy is
equal in the fuel and oxidizer streams and a maximum sensible
enthalpy can be obtained from the product of the methane mass
fraction in the fuel stream and the enthalpy of combustion as
hs,max = hcombYCH4,F . The normalized sensible enthalpy,ĥs is
then given byĥs = (hs−hs,min)/(hs,max−hs,min). Please note
that this is equivalent to the definition of reduced temperature
Θ = (T −T0)/(Tmax−T0) for a constant property flow and the
initial conditions forĥs can be obtained from the flamelet solu-
tion.

Local extinction will only be present if the turbulence time
scales are of the same order as the chemical time scales, i.e.
Damköhler number,Da = τ0/τc must be relatively low. How-
ever, typical three dimensional DNS calculations do not have
Reynolds numbers large enough to yield sufficiently low turbu-
lence time scales. Here we follow the technique used in refer-
ences [7, 22] where the pre-exponential factors of the four-step
chemical kinetics scheme are adjusted to increase the chemi-
cal time scales and thus, to reduce the Damköler number. This
method ensures relatively low computational cost while thekey
parameter that controls extinction and re-ignition can be ad-
justed. Three cases are investigated here with different pre-
exponential scaling factorsf and approximate scalar dissipation
rates at quenching:

• Case A with moderate local extinction;f = 0.10×10−2

andNq = 0.30s−1,

• Case B with significant local extinction;f = 0.45×10−3

andNq = 0.090s−1 and

• Case C with global extinction;f = 0.22×10−3 andNq =

0.045s−1.

The variation in pre-exponential factors and the corresponding
quenching values for scalar dissipation ensures a variablede-
gree of extinction for the three cases. Turbulent mixing in-
creases scalar gradients at the beginning of the computations
while turbulence decay and an advanced mixing state lead to
smaller dissipation values at later times. The smaller dissipa-
tion values then allow reignition in Cases A and B att∗ > 1.2.

The MMC equations are solved for the same scalars simu-
lated in the DNS. The convective term in equation (1) can be
neglected due to the homogeneity of flow and scalar fields.
The diffusion and drift terms are modelled according to equa-
tions (12) and (4), respectively. A semi-implicit scheme us-
ing second-order differencing in reference spaces and first-order
temporal discretisation is used. Conditional reaction rates are
treated explicitly. For the reference variables there are 50 cells
in the range−4 < ξ < 4 with clustering nearξ = 0. Computa-
tions using increased grid resolution do not produce significant
changes in the results.

The joint PDF of the major scalars (which in MMC approxi-
mates the joint PDF of all scalars) is generally known at the
initial time. The joint PDF is related to the mapping func-
tions of the major scalars through an equality of the cumula-
tive distribution functions in scalar and reference spaces. For
multi-dimensional spaces an ordering of the major scalars is re-
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Figure 1: Mixture fraction and normalized sensible enthalpy in reference space att∗ = 0.0 (top) andt∗ = 1.0 (bottom).

quired [13, 20]. As the primary dependence in turbulent dif-
fusion flames is on the mixture fraction we order the variables
with mixture fraction first and normalised sensible enthalpy sec-
ond. The mapping function for mixture fraction is initiallya
function ofξ1 only and is determined by solving the following
integral equation forX1:

Z X1(ξ1)

0
P(η)dη =

Z ξ1

−∞
P(ξ1)dξ1. (16)

HerePZ(η) is the marginal PDF for mixture fraction. Subse-
quently the mapping functionX2 for normalised sensible en-
thalpy is made at eachξ1 via

Z X1(ξ1,ξ2)

0
P(ζ | η)dζ =

Z ξ2

−∞
P(ξ2)dξ2. (17)

whereP(ζ | η) is the PDF inζ conditioned onη. The mapping
functions for the minor scalars are deterministic functions ofX1
andX2. We use stretched laminar flamelet initial conditions.

Model results

Further Closures

First, further closure assumptions are introduced. Full MMC
closure requires the unconditional dissipationÑ11, Ñ12, Ñ22 and
the conditional scalar dissipation fluctuations〈N′2

11 | η〉/〈N11 |
η〉. While models for the passive and reactive scalar dissipa-

tion exist [23], we are not aware of any model for the cross-
correlation Ñ12. Usually, Ñ12 ≪ Ñ11 due to its change in
sign around stoichiometric and we suggestÑ12 = 0 and neglect
cross-correlations in equation (1) by settingB12 = B21 = 0. B11
andB22 can then be computed from a reduced 2×2 matrix de-
duced from equation (7). A final assumption refers to the mod-
elling of the scalar dissipation fluctuations. They can be esti-
mated having a lognormal variance of one leading tocα = −1
following equation (15). DNS data shows that the mixture frac-
tion dependence ofcα is small and thatcα ≈ −0.3 initially be-
fore increasing to approximatelycα ≈ −1.1 at the end of the
simulation. Slightly faster extinction can therefore be observed
for constantcα =−1, but differences are small since the corre-
lation functionfcorr =−〈ĥs |η = Zst〉 decreases with increasing
degree of extinction and this reduces the effective coefficient in
the exponential function, equation (12), quickly. The joint PDF,
the mean mass fractions of the reactive species and their vari-
ances are hardly affected by the introduction of the additional
closure assumptions and a comparison is therefore not shown
here. It is noted that the new MMC(Z,hs) implementation now
requires merely the unconditional dissipations of mixturefrac-
tion and sensible enthalpy as input for the modelling of the ef-
fects of homogeneous turbulence on the reaction process and
the modelling of the evolution in mixture fraction-sensible en-
thalpy space is thus fully closed.
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Figure 2: Comparison of the joint mixture fraction-sensible enthalpy PDF from DNS with modelling results at different times (t∗ = 1.0
(top) andt∗ = 2.5 (bottom)).

Prediction of the major scalars

MMC models the evolution of all scalars in reference space
and the distribution of the major scalars gives their joint PDF
in real space. In this subsection we will analyze the modelling
of the major scalars only. For a better illustration of the method,
we show in figure 1 the mapping functions of mixture frac-
tion and sensible enthalpy at the start of the simulation andat
t∗ = 1.0. As described above,Z is initialized as function of
ξ1 only, and the Heaveside function inξ1-space results from a
doubleδ-PDF in real space. Theξ1 location of the step deter-
mines the average mixture fraction,〈Z〉. The normalized sen-
sible enthalpy is initialized as a function ofZ and peaks where
Z(ξ1,ξ2) = Zst = 1/3. Note thatĥs is independent ofξ2 ini-
tially. The exponential dependence ofB11 on ξ2 (cf. equa-
tion (12)) leads to higher diffusion for lowξ2 and causes more
mixing and a noticeable reduction in temperature. It is there-
fore responsible for local extinction. To facilitate the analysis
of MMC, all results are now transformed intoη−ζ−space us-
ing the expression

PZ,ĥs
= Pξ ·det

(
∂Xj

∂ξk

)−1

(18)

that relates the presumed PDF in reference space,Pξ, with the
modelled PDF,PZ,ĥs

, in physical space. The resulting joint PDF,
PZ,ĥs

(η,ζ), can now directly be compared with DNS data.

Figure 2 demonstrates good qualitative agreement between
MMC and DNS at different times, in particular around stoi-
chiometric. The key characteristic of the modelled joint PDF
is the capability to capture the location of the extrema correctly.
For better quantitative comparison, the joint PDFs are plotted
alongζ for constant mixture fraction values in figure 3. The bi-
modal character of the conditional PDF is well captured around
stoichiometric and the location of the maxima is well approxi-
mated. A somewhat wider distribution is noted in the DNS data
and the qualitative agreement between MMC and DNS is simi-
lar at all times. Of major influence is an artefact of the model.
A large diffusion coefficient at lowξ2 leads to enhanced mixing

not only of temperature and species but also of mixture fraction.
This leads to low gradients ofZ for negativeξ2 as can be seen
in figure 1 and to the relatively high probability for low tem-
peratures around the mean value of mixture fraction,〈Z〉. The
current implementation of MMC fixes high dissipation values
to certain regions inξ1-ξ2-space while in real space the inter-
mittent behaviour of scalar dissipation does not lead to specific
regions of low mixture fraction gradients. A stochastic imple-
mentation of MMC may alleviate these shortcomings, but this
coupling cannot be avoided in deterministic MMC. In the cur-
rent study, the low gradients ofZ at lowξ2 do not unduly affect
the average concentrations and modelling errors seem accept-
able.

For better comparison with previous modelling attempts [15, 2],
a presumedβ-distribution of the joint PDF is also included in
figures 2 (right column) and 3 (dashed lines). The presumed

joint PDF can be modelled byPβ
Z,ĥs

(η,ζ) = Pβ(ζ | η) ·Pβ(η)

where the superscript·β indicates the presumedβ−probability
distribution. MMC shows clear improvements over aβ−PDF
distribution, in particular around stoichiometric. The condi-
tional β-PDF cannot capture the bi-modal distribution with ex-
trema away from the bounds, it exhibits an almost constant
slope inζ-space in figure 3 and is thus qualitatively wrong. The
conditionalβ−PDF performs better away from stoichiometric
where only one extremum exists (see figure 3) but it shall be
noted that the conditional variance of sensible enthalpy has been
taken from DNS to construct the conditionalβ-PDF, P(ζ | η).
Large uncertainties in the modelling of the conditional variance
equation will almost certainly lead to further deviations of the
β-PDF from DNS data even away from stoichiometric. MMC
avoids many of the issues associated with the modelling of the
conditional variance equation and the conditional variance is
solved implicitly.

A more common measure for the level of extinction is the con-
ditional temperature of sensible enthalpy at stoichiometric. All
three cases are included in figure 4 and agreement between
MMC and DNS is excellent for cases B and C. The level of ex-
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Figure 3: Joint PDF as function ofζ for different constant mix-
ture fraction values att∗ = 1.0.

tinction and the onset of reignition in case B are modelled well.
Results from MMC(Z) are included here for comparison with
conventional single conditioning methods such as singly condi-
tioned CMC and to re-iterate the need for doubly-conditioned
approaches. Unfortunately, predictions for case A are lesssat-
isfactory. The level of extinction is not well predicted andthis
is in line with earlier studies [3, 2]. The lack of local extinction
is due to an underprediction of the variance. This is primarily
caused by enforcing positiveB22 which is a necessary condition
for numerical stability. Klimenko [10] suggests that matching
of the conditionalfluctuations is important for accurate MMC
predictions. This is certainly correct, however, even the impo-
sition of the correct fluctuations in sensible enthalpy space [2]
did not lead to improved modelling results due to the constraint
of B22 ≥ 0. Possible improvements of the present implemen-
tation of MMC(Z,hs) includeξ1 dependence ofB11 to ensure
independence ofB11 from η and lognormality for constantη
that is violated in the results presented here at later timesdue
to the evolution ofZ in ξ1− ξ2-space. However, we carried
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Figure 4: Conditionally averaged sensible enthalpy as a func-
tion of time for η = Zst. Symbols denote DNS data, the solid
lines are results from MMC(Z,ĥs) and the dashed lines are from
MMC(Z).

out computations with these modifications, but improvements
are marginal, they do not justify the added complexity and are
therefore not shown here.

The averaged temperature is a global measure for the perfor-
mance of the simulation methods. Figure 5 compares the evo-
lution of the mean temperature from MMC(Z,ĥs) predictions
with DNS and MMC(Z). MMC(Z,ĥs) predictions are good at
all times and the somewhat narrow distribution inζ-space that
can be observed in figure 3 does not greatly affect integral quan-
tities.
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Figure 5: Comparison of mean temperature as function of time.

Prediction of the minor scalars

Predictions of all reactive (minor) species are good at all times.
Figure 6 compares doubly conditioned mass fractions of CO
from DNS and MMC as function ofζ for η = Zst andη = 0.5.
The cut-off that can be observed for MMC for high and lowζ-
values results from the predicted zero probability in this region.
Good agreement of the doubly conditioned quantities with DNS
data implies that mixture fraction and normalized sensibleen-
thalpy describe turbulent scalar fluctuations well and thatthe
chemical source term can be modelled with first order closure
based on these doubly conditioned mass fractions. This can be
expected since earlier studies on doubly conditioned moment
closure [16, 15] demonstrated that the two major (or condition-
ing) scalarsZ and ĥs parameterize the composition space well
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and that fluctuations around the doubly conditioned means are
small. Agreement with DNS is satisfactory for the volume av-
eraged quantities that are shown in figure 7 for all solved minor
species as function of time for all three cases. It is apparent that
the quality of the prediction for the volume averages follows the
trends in the predictions of the joint PDF. Good agreement can
be achieved for cases B and C, however, the underpredition of
the level of extinction for case A leads to clear deviations of the
MMC simulations from the DNS for all species mass fractions
and is less satisfactory.
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Figure 6: Comparison of doubly conditioned CO mass fraction
for fixed mixture fraction values att∗ = 1.0 (top),t∗ = 2.0 (cen-
tre) andt∗ = 3.0 (bottom).

Conclusion

Multiple Mapping Conditioning has been used to model hydro-
carbon combustion with local extinction and reignition dueto
turbulent strain. In the current implementation, the two refer-
ence variables represent mixture fraction and normalized sen-
sible enthalpy, however, the strong correlation between sensi-
ble enthalpy and scalar dissipation fluctuations during theex-
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Figure 7: Comparison of mean mass fractions of minor species
as function of time.

tinction process is exploited. The second reference variable is
therefore implemented as a dissipation-like variable and acor-
relation coefficient is introduced to characterize the correlation
between dissipation fluctuations and sensible enthalpy. This al-
lows for matching the scalar fluctuations of mixture fraction and
sensible enthalpy and for generating conditional fluctuations of
the temperature field about its mean. The evolution of mixture
fraction and sensible enthalpy in reference space model their
joint distribution well and results are a clear improvementover
previous modelling approaches using conditional presumedβ-
distributions. Further modelling assumption of negligible cross-
correlations and of a lognormal distribution of dissipation in ref-
erence space with a variance of unity do not markedly affect the
quality of the predictions and a fully closed deterministicmodel
that is capable of predicting extinction and re-ignition has been
presented. Predictions of major and minor species is good and
qualitatively comparable to earlier preditions using a ’hybrid’
model [2] where conditional sensible enthalpy fluctuationshad
to be taken from DNS and were imposed on the MMC computa-
tions to ensure the correct evolution of conditional temperature
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fluctuations and the occurence of extinction.
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