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Abstract

The current paper presents the spatio-temporal stability analysis
of an instance of laminar separation, with the intention of deter-
mining the most appropriate forcing frequency to initiate flow
reattachment. The flow configuration is a NACA 0015 airfoil at
an angle of attack (α) where laminar separation occurs imme-
diately downstream of the leading edge. A zero-net-mass-flux
(ZNMF) jet, normal to the surface and spanning the entire lead-
ing edge is used to achieve reattachment. The uncontrolled flow
field was generated numerically in [5] using a three-dimensional
(3-D) Large Eddy Simulation (LES) and compared to the com-
plementary water tunnel experiments of [22]. Initial simula-
tions of the uncontrolled case agree well with the PIV and force
measurements. The stability analysis presented herein is un-
dertaken on the mean velocity field of the LES. The frequency
determined by the stability analysis to maximise spatial growth
of the disturbance is finally compared to the forcing frequency
that maximised lift enhancement in the experimental study.

Introduction

The control of separation in a laminar separated boundary layer
is inherently linked to the initiation of the transition to turbu-
lence. Laminar separation occurs due to the presence of an ad-
verse pressure gradient (APG). In the present case, the APG is
applied via the curvature of the airfoil surface with respect to
the freestream. Laminar velocity profiles on the verge of sep-
aration are significantly more unstable to small disturbances as
opposed to those with a healthy velocity profile [14]. The for-
mer are therefore more amenable to transition to turbulencefor
a given disturbance level in the environment, or an activelyap-
plied control. If the flow becomes turbulent, by virtue of the
enhanced mixing, higher momentum fluid is drawn toward the
wall and the potential for reattachment is increased. The prob-
lem of determining the frequency that best promotes reattach-
ment in a laminar separated boundary layer, is therefore, equiv-
alent to determining the frequency that best initiates transition
to turbulence. The latter can be determined using the perturba-
tion form of theNavier Stokes Equations(NSE) to determine
the frequency that will maximise the spatial growth of a distur-
bance.

Proper selection of the forcing frequency ensures that a lower
control amplitude is required and hence less energy expended
to achieve the desired goal. This was illustrated in the study of
[16], when both steady and oscillatory tangential blowing was
applied to achieve a lift enhancement on a NACA 0015 airfoil
for a Reynolds number based on chord length ofRec = 1×106.
This study found that an order of magnitude less energy was
required for an oscillatory jet to achieve the same lift enhance-
ment when compared to the jets generated by the steady blow-
ing mode. In the present study a ZNMF jet is adopted to apply
the control.

ZNMF jets are a special case of oscillatory jets as they have
zero net mass injection into the domain over one complete cy-
cle, but importantly a non-zero momentum flow into the do-
main. They are typically formed by an oscillating membrane
within a cavity flush-mounted below the aerodynamic surface.
The cavity locally inhales and exhales the working fluid, gen-
erating a separated shear layer from its orifice [7]. ZNMF jets
have successfully been applied to a range of airfoil and turbine
flow configurations for separation control. Studies with appli-
cation to low-pressure turbines have again illustrated improved
efficiency of unsteady over steady suction, and jets normal to
the wall were more effective than tangential blowing [19] [12].
The airfoil application of [17] atRec = 3×105 found that jets
closer to the uncontrolled separation point require a lowerjet
velocity to achieve the same lift enhancement.

Paying attention to these previous findings, [22] later undertook
experiments on a NACA 0015 airfoil atRec = 3×105, with the
ZNMF jet normal to the surface and at the leading edge, which
was near the uncontrolled separation point for angles of attack
past the post-stall region. An LES of this flow configuration was
then undertaken in [5]. This paper will provide a brief overview
of both the experimental and numerical studies and then present
the stability analysis of the mean velocity field from the LES.

Overview of Experimental Measurements

The parameter space explored in the experimental study of [22]
is presented below non-dimensionalised on the basis of cord
length (c) and freestream velocity (U∞). The pertinent non-
dimensional parameters are the Reynolds number (Rec), forc-
ing frequency (F+), momentum blowing coefficient (cµ), and
for completeness an alternate measure of the jet velocity, the
velocity ratio (VR). Table 1 outlines the parameter definitions,
the range explored with force measurements, and the parame-
ter set that maximised the lift enhacement. Flow visualisations
were then undertaken atα = 18◦ for the uncontrolled and con-
trolled flow with the parameters maximising lift enhancment.
Dye streak visualisations gave a qualitative indication ofthe
mean velocity fields, illustrating that the control significantly
reduced the mean separated region (see Fig.1). Particle Image
Velocimetry (PIV) measurements were also undertaken to quan-
tify the velocity fields.

It is assumed that the maximum lift enhancement coincides with
the greatest level of reattachment and hence the most effective
transition to turbulence of the laminar flow region. This as-
sumption allows the comparison of the frequency determinedin
the experiments to maximise lift enhancement (F+

max−li f t ) to the
forcing frequency determined in the stability analysis to max-
imise spatial growth of a disturbance (F+

max−sg).

Overview of Numerical Simulation

The study of [5] utilised the incompressible version of the code
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Parameter Range Lift Enhacement
Definition Explored Maximised with
Rec ≡

U∞c
ν 3×104 3×104

F+ ≡ f c
u∞

0.3≤ F+ ≤ 2 1.3

cµ ≡ 2h
c(

uj ,rms
U∞

)2 0≤ cµ ≤ 1.38×10−3 1.38×10−3

VR=
uj ,rms

U∞
0≤VR≤ 0.7 0.7

α 0◦ ≤ α ≤ 27◦ α = 18◦

Table 1: Parameter exploration with force measurements in the experiments of [22]

(a) (b)

Figure 1: Die streak flow visualisations of a NACA 0015 airfoil at α = 18◦. (a) uncontrolled; (b) controlled. Modified from [22]
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u jet(t)

(a) (b) (c)

Figure 2: Topology of the modified C-type grid. (a) block topology; (b) body-fitted airfoil grid; (c) ZNMF jet cavity. [5]

Direction Domain Size Cell Count Cell Spacing Viscous Scaling
C 28c 808 2×10−4 < ∆C/c < 1×10−2 ∆C+/c≤ 24
N 6c 80 ∆N/c = 1.2×10−3 ∆N+/c≤ 3
Z 1c 40 ∆Z/c = 5.0×10−2 ∆Z+/c≤ 150

Table 2: LES grid spacing details of [5]

CDP to replicate the experimental study of [22].CDP was de-
veloped at theStanford Center for Turbulence Researchand is
an unstructured finite volume based solver. Numerical dissi-
pation is minimised by discretising the continuity and momen-
tum equations such that they discretely conserve kinetic energy.
This is enforced on the pressure and convective terms using the
approach outlined in [8]. The dynamic Smagorinski subgrid
scale (SGS) model of [3] was adopted for the 3-D LES calcula-
tion.

A modified C-type grid of the NACA 0015 airfoil was adopted
with the block topology as illustrated in Fig. 2(a). The grid
was summarised by the inlet arc (C), the distance between the
body and the outer boundary (N), and in the spanwise domain
(Z). A Dirichlet boundary condition of(u,v,w) = (U∞,0,0) was
applied at the inlet, top, and bottom boundaries. A Neumann

boundary condition of∂u
∂x = 0 was applied at the outlet and a

periodic boundary condition was applied in the spanwise di-
rection. The computational domain size, cell count, and cell
spacings (non-dimensionalised by the cord and also in viscous
units) are summarised in Table 2. The ZNMF jet cavity was
also resolved by the grid, but note that no controlled results are
presented herein. For further details on the numerical approach
refer to [5].

It is acknowledged that the resolution in the spanwise direction
is not adequate, and the domain size in the spanwise direction
is possibly larger than necessary. The LES data presented has
a ∆Z+ ≤ 150, which is greater than the recommended level of
∆Z+ ≤ 2 as observed in the related studies of [1] and [23]. The
airfoil study of [23] also used a spanwise domain size of 0.2c
in contrast to the domain size of 1c used in LES data presented.
Simulations are currently being undertaken with the appropri-
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Figure 3: Mean streamlines of the natural state from: a) PIV measurement of [22]; and b) 3-D LES of [5]

ate modifications (note the cavity has also subsequently been
removed). Despite the lack of resolution in the spanwise direc-
tion, the integrated forces agreed with the force measurements
to within measurement error and there is a qualitative agree-
ment with the PIV measurements as illustrated in Fig. 3. From
this perspective the author assumes that the data is adequate to
perform an initial stability analysis.

Stability Analysis Formulation

The stability of a fluidic system is governed by the perturba-
tion form of the NSE to determine the effect that small per-
turbations have on the transition to turbulence. The perturba-
tion form of the NSE, considering the vortical instabilities are
formed by substituting the Reynold’s decomposition of velocity
(ui = ūi + ũi ) and pressure (p = p̄+ p̃) into the NSE and ex-
panding the terms. Theoverbar modifier designates the time
averaged mean and thetilde a small fluctuating component. As-
suming the mean component is not time varying, then the NSE
of only the mean terms are then subtracted away to return the
following system of equations

∂ũi

∂xi
= 0, and (1)

∂ũi

∂t
+ ū j

∂ũi

∂x j
+ ũ j

∂ūi

∂x j
+

∂p̃
∂x j

−
1

Re
∂2ũi

∂x2
j

=−ũ j
∂ũi

∂x j
. (2)

whereũ j
∂ũi
∂x j

are quasi-linear terms and neglected in linear anal-

ysis methods [15].

For the present application, in the above system of equations
x1 ≡ x is the wall tangential direction,x2 ≡ y is the wall nor-
mal andx3 ≡ z the spanwise. Usually for an attached semi-
bounded domain a boundary layer length scale is used to non-
dimensionalise the system. In this case, however, the veloc-
ity profiles of interest are all separated. Consequently thesys-
tem is instead non-dimensionalised on the basis of momentum
thickness (ΘSL) and convection velocity ( ¯uSL) of the shear layer.
ūSL = ū1+ū2

2 , whereū1 andū2 are the maximum and minimum
velocities at the ends of the shear layer respectively.

The analysis can then be classified as being either local or global
depending on the dimensionality of the mean velocity field. Let
us first introduce the state vectorq = (u,v,w, p)T . The most
general case is when all mean velocity components are non-
zero and each are functions of all three spatial dimensions,such
that

q̄ = (ū(x,y,z), v̄(x,y,z), w̄(x,y,z), p̄(x,y,z)). (3)

This mean field structure only allows Fourier decompositionin
the time domain such that the perturbation vector is of the form

q̃(x,y,z,t) = q̂(x,y,z)e−iΩ3Dt +c.c. (4)

where thehat modifier designates the associated eigenvector
andc.c stands for complex conjugate. Substituting the pertur-
bation vector ˜q and mean field structure ¯q into the perturbation
for of the NSE, results in a 3-D eigenvalue problem [21]. If
the physics of the system, however, suggest that∂q

∂z ≪
∂q
∂x and

∂q
∂z ≪

∂q
∂y then the mean field can be simplified to be a function

of only x andy. This case is termedBiGlobalwith an associated
2-D mean field and perturbation vector of the form

q̄ = (u(x,y),v(x,y),0, p(x,y)). (5)

q̃(x,y,z,t) = q̂(x,y)eikzz−iΩ2Dt +c.c. (6)

resulting in a two-dimensional (2-D) eigenvalue problem [21].

Local stability analysis is applicable when the physics of the
system suggest that∂q̄

∂x ≪
∂q̄
∂y and ∂q̄

∂z ≪
∂q̄
∂y . This means that the

mean velocity field is parallel and only a function of the wall
normal directiony as follows

q̄ = (u(y),0,0, p(y)), (7)

with associated perturbation vector

q̃(x,y,z,t) = q̂(y)eikxx+ikzz−iΩt +c.c. (8)

wherekx andkz are the complex wave numbers in thex andz
directions respectively andΩ is the complex temporal eigen-
value. Substituting ˜q into into the perturbation form of the NSE
produces a second order four-equation system called theOrr-
Sommerfeld Equations(OSE) [10] [18]. In the invicid limit,
they are termed theRayleighequations [13]. The pressure per-
turbation is often removed by manipulating the OSE by utilis-
ing an alternate state variable is ˜q = (ṽ, ω̃y)

T , where ˜v and ω̃y
are the wall normal velocity and vorticity perturbations respec-
tively. After some manipulation a forth order two-equationsys-
tem is produced, termed theOrr-Sommerfeld Squire Equations
(OSSE) [20]. The generalised eigenvalue problem is stated as

iΩMq̃ = Lq̃ (9)

iΩ
(

∇2 0
0 I

)(

ṽ
ω̃y

)

=

(

LOS 0
C LSQ

)(

ṽ
ω̃y

)

(10)

with

LOS=−ikxū∇2 + ikx
∂2ū

∂y2 +
1

Re
∇4 (11)

C = ikz
∂ū
∂y

(12)

LSQ= ikxū−
1

Re
∇2 (13)
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Figure 4: Indicators of valid regions for local linear stability analysis: (a) degree of parallelism quantified by〈v̄〉/ūSL; (b) degree of
unsteadiness quantified by〈
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where∇≡ (ikx,
∂
∂y , iky). Hence∇2 ≡ ∂2

∂y2 −k2I and∇4 ≡ ∂4

∂y4 −

2k2I +k4I , wherek2 ≡ k2
x +k2

z andI is the identity matrix [15].

The above formulation captures the linear growth of a local dis-
turbance in all three spatial dimensions and time. For an in-
stability to be unstable, it must grow in both space and time.
The imaginary components (subscripti) of the wave numbers
and eigenvalues indicate the growth rates and real components
(subscriptr) the period of oscilation. From equation 8 it can be
seen that ifkx,i < 0, q̃ will grow and the system is spatially un-
stable, and the system is temporally unstable, ifΩi > 0. Within
the framework of the linearised OSSE, the most unstable eigen-
value will always havekz = 0 [2]. This uncouples the equations
and it is valid to solve for only the wall normal velocity pertur-
bation ṽ. If, however, a given system is found to be stable for
all possible wave numbers it is possible that there is a period
of significant initial transient growth due to non-orthogonality
of the eigenvectors, even though all disturbance will decayin
the limit of larget. If this is the case then it is possible to find
a larger transient growth for non-zerokz and it is important to
search this space and also to solve for both ˜v and ω̃y [15]. If
the transient growth is large enough then non-linear effects will
become important. This then provides an alternate means of the
system to possibly become unstable in the limit of larget.

The present study will focus on the search of primary instabil-
ities so the analysis will be confined tokz = 0 and the solution
of only ṽ. Strictly speaking the physics of the system suggest
that theBiGlobal formulation is the simplest model allowable
for the stability analysis. The local formulation, however, will
be applied to regions in flow field that best satisfy the prescribed
assumptions.

Regions of Validity for Local Linear Stability Analysis

Three key assumption have been made up to this point regard-
ing the stability analysis: one, the flow is parallel; two, the mean
velocity field is steady; and three, non-linear effects are negligi-
ble. The degree to which each of these assumptions are met is
discussed in this section. The most appropriate region to under-
take the stability analysis is then determined as the profilethat
best satisfies these assumptions.

To quantify how parallel the flow actually is, ¯v is spatially aver-
aged (denoted by〈v̄〉) for a series of profiles normal to the air-
foil surface. Figure. 4(a) illustrates this quantity plotted against

the distance along the cord length (xcord) from the point of
separationxcord,sep and non-dimensionalised by the boundary
layer momentum thickness at the point of separation (ΘBL,sep).
All spatial averages were undertaken over a profile length of
500ΘBL,sep. At the point of separation (xcord = 3.6ΘBL,sep) 〈v̄〉
is as large as 0.7ūSL and then reaches a minimum of 0.1ūSL
at xcord = 100ΘBL,sep. This is equivalent to a distance from the
leading edge ofxcord = 0.08c. Past this point〈v̄〉 again increases
and plateaus to 0.1U∞ at xcord = 300ΘBL,sep (0.24c).

The second assumption is addressed by spatially averaging the
magnitude of all root mean square (rms) velocity components.
Figure. 4(b) illustrates that there is always an unsteady com-
ponent from the point of separation onward. It increases from
an initially modest level of 0.04ūSL to approximately 0.4ūSL at
xcord = 500ΘBL,sep (0.4c).

The third assumption of linearity is quantified by determining
the manner in whichΘSL grows with position along the shear
layer. In contrast to the previous two figures, where the veloc-
ity profiles were taken normal to the airfoil surface, in thiscase
they are taken normal to the centre of the shear layer as illus-
trated in Fig. 5(a), and referenced with respect to the distance
along the shear layerxSL again from the point of separation
xSL,sep. The centre of the shear layer was determined by fitting
a spline to the region of zero time averaged spanwise vorticity
(ω̄z). Fig. 5(b) illustrates an initial period of non-linear growth
within 100ΘBL,sepof the point of separation. Past this point the
growth is linear, and hence validates the linearity assumption
over the range illustrated.

Assuming the shear layer has a parallel hyperbolic tangent pro-
file and the flow is invicid, the result of [9] can be used to
provide an indication of the frequency that will best promote
reattachment. The study of [9] showed that the most spatially
amplified wave grows when excited at the non-dimensional fre-
quencyFmax−sg = 0.032. This result can then be dimension-
alised via

fmax−sg =
Fmax−sgūSL

ΘSL
=

0.032ūSL

ΘSL
, (14)

where fmax−sg is the associated dimensional frequency. This
relationship is applied to each velocity profile normal to the
shear layer and then non-dimensionalised with respect to the
cord length (F+

max−sg =
fmax−sgc

U∞
) to relate the results back to

the experimental study of [22]. Figure 5(c) illustrates that
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Figure 5: Shear layer properties: (a) location of velocity profiles, with the shear layer illustrated by contours ofω̄z; (b) degree of
linearity quantified byΘSL/ΘBL,sep; (c) indication of best frequency to initiate transition toturbulenceF+
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Figure 6: Effect of numerical parameters on the most unstable eigenvalue of the Orr-Sommerfeld Squire equations: (a) effect of
polynomial order; (b) effect of spatial resolution in wall normal direction.

F+
max−sg plateaus pastxSL = 300ΘBL,sep to a frequency simi-

lar to that determined to maximise lift in the experimental study
of F+

max−li f t = 1.3. The velocity profile normal to the airfoil
surface that intersects the shear layer atxSL = 300ΘBL,sep is
xcord = 270ΘBL,sep. The stability analysis to follow will be ap-
plied normal to the airfoil surface at this position as it is within
the linear region, equally satisfies the steady and parallelflow
assumption and the shear layer analysis method of [9] indicates
that the frequency that would maximise the spatial growth of
the disturbances is similar to that stated in the experiment.

Sensitivity of the Orr-Sommerfeld Squire Stability Analys is

The Orr-Sommerfeld Squire local stability code solves the gen-
eralised eigenvalue problem of equation 9 using a spectral
Chebyshev collocation method to discretise the wall normaldi-
mension. TheChebyshevderivative matricesD(n) replace the
∂n

∂yn operators applied to the perturbation components. For de-
tails in this approach the interested reader is referred to [11].
The code is written inC++ , utilising the Blitz++ library to
handle the complex number mathematics and matrix operations,
andclapackfor the eigenvalue calculations.

The sensitivity of the code to the reconstruction of the mean
velocity profiles and theChebyshevspatial resolution is dis-
cussed in this section with application to the velocity profile
at xcord = 270ΘBL,sep. For this particular profileΘSL = 0.012c,
ūSL = 0.54U∞ and the Reynolds number based on these param-

etersReΘSL
= ūSLΘSL

ν = 196. A domain size of 80ΘSL is used in
the following simulations.

The accuracy of the mean velocity field is very important in
the analysis. Getting accurate data for∂2ū

∂y2 , required for the
term LOS, is the most difficult task and the source of greatest
error. The error is minimised by using the unstructured dis-
cretisation withinCDP to find all of the Cartesian second order
spatial derivatives of the mean velocity field. The derivatives
and the mean velocities themselves were then interpolated onto
the velocity profile by fitting a 2-D polynomial surface to the
LES data. The stencil of node points on the LES mesh utilised
to fit the polynomial surface was selected on the basis of prox-
imity to the point on the velocity profile required for interpola-
tion. ∂2ū

∂y2 (wherey is wall normal direction and not the Cartesian
direction) was then reconstructed from the cartesian second or-
der derivatives. The sensitivity of the most unstable eigenvalue
to the polynomial order (p) was tested. Figure 6(a) illustrates
an initial fluctuation in the real component of the wave speed
(cr = Ωr/kx,r ) and then plateaus pastp = 3. The imaginary
component (ci = Ωi/kx,r ) changed negligibly in comparison.
p = 5 was required for the velocity profiles to be completely
smooth and utilised for the all of the following simulations. It
is acknowledged that the largest accumulation of errors occurs
at this step. The error will be quantified in the future by using
an appropriate analytical test function to trace the accumulation
of the error throughout the process.
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The sensitivity of the spatial resolution was then tested byhold-
ing the polynomial order constant atp = 5 and increasing the
number of Chebyshev collocation points(N + 1). Figure 6(b)
shows a convergence ofcr atN = 512. This level of spatial res-
olution was then used for all following simulations. The scale
on they axis is the same in both Figure 6(a) and Figure 6(b)
to highlight the greater variability incr as a result of the poly-
nomial order. The effect of wall normal domain size was also
tested and found to modifycr a negligible amount in compari-
son to the polynomial order and spatial resolution.

Mapping of the Orr-Sommerfeld Squire Equations

As previously stated a system is spatially unstable ifkx,i < 0. In
this section a series of unstable spatial wave numbers of vary-
ing growth rate and period are mapped to the temporal com-
plex plane through the OSSE. For each grid point in Fig. 7(a)
an eigenvalue problem is solved and the most unstable eigen-
value identified. Each grid point is then coloured by the growth
rate of the eigenvalueΩi . The thick black line indicates the
line whereΩi = 0. Fig. 7(b) is an alternate representation of
the same data. Instead of being plotted on the complex spa-
tial kx wavenumber plane, it is plotted on the complex tempo-
ral Ω plane and now coloured with contours of spatial growth
rate kx,i . The thick black lines in each figure are equivalent.
This line is important as it is the line with no temporal growth.
This is representative of the ZNMF jet providing a perturba-
tion at a constant amplitude. The task now is to identify for
which temporal periodΩr the spatial growth is a maximum.
This is achieved by interpolating the values of the spatial growth
ratekx,i onto the thick black line. The result of this interpola-
tion is plotted in Fig. 7(c) withkx,i negated as a perturbation is
spatially unstable forkx,i < 0. The maximum spatial growth
occurs atΩr,max−sg = 0.227. The frequency that maximises

spatial growth is therefore,Fmax−sg =
Ωr,max−sg

2π = 0.036. This
is in close agreement with the previously stated result of [9]
of Fmax−sg = 0.032. TheFmax−sg determined from the current
analysis is dimensionalised via

fmax−sg =
Fmax−sguSL

ΘSL
=

0.036×0.544U∞
0.012c

=
1.64u∞

c
(15)

and finally scaled with respect to the airfoil length scales to
yield

F+
max−sg=

fmax−sgc

U∞
= 1.64. (16)

This is again in close agree with the frequency determined inthe
experimental study of [22] to maximise the lift enhancementof
the airfoil of F+

max−li f t = 1.3.

The complexkx associated with the eigenvalue withΩ =
Ωr,max−sg+ 0i was interpolated from the results of the eigen-
value simulations to bekx = 0.232− 0.125i. This particular
wave number was simulated and produces a temporal eigen-
value ofΩ = 0.227+ 0.002i. This eigenvalue has no temporal
growth, to two decimal places, and is assumed to be an ade-
quate representation of the desired disturbance. The magnitude
of the normalised wall normal velocity eigenvector (|v̂|) associ-
ated with this eigenvalue is illustrated in Fig. 7(d). It is plotted
along side ¯u/ūSL, to illustrated that the majority of the energy
within v̂ is concentrated in the shear layer region. It is therefore
evident that the excitation of the shear layer is responsible for
the transition to turbulence. This causes an increase in mixing
with the freestream at this station and higher momentum fluid
is draw to the wall, thus promoting reattachment.

This instability can also be classed as convective. The pinch
point in Fig. 7(b), designnated by the pointP, indicates the lo-
cation where the group velocitycgr = 0 [6]. cgr is the speed

at which a wave is convected in space. If an instability is un-
stable wherecgr = 0, then the instability is classed as absolute,
as eventually the instability will grow and fill the entire domain
and remain even after the source of the instability has been re-
moved [4]. In this case, however, the pinch point is spatially un-
stable (by virtue of only simulating spatially unstable wavenum-
bers), but temporally stable asΩi < 0 at this point. The instabil-
ity is, therefore, convective. This means that when the source of
the control is removed, the the instability will convect away, and
the system will return back to the initial uncontrolled state [4].
This behaviour was also observed in the experiments of [22].

Concluding Remarks

The present paper has discussed the process of undertaking alo-
cal stability analysis on an instance of laminar separation. The
key issue throughout the process has been one of spatial reso-
lution. This line of research was initiated with the experiments
of [22], with PIV measurements providing an initial mean ve-
locity field. The spatial resolution of this mean velocity field
was then increased in the numerical study of [5] using the PIV
measurements to validate the LES. The spatial resolution re-
quirements for the stability analysis presented herein, however,
is still greater than available from the LES. A 2-D polynomial
surface was fit to the LES data to interpolate the data required
for the additional spatial resolution. It is this final step that re-
quires additional development and verification.

Despite the issues surrounding the interpolation of the mean ve-
locity field, and the analysis not strictly adhering to the local sta-
bility assumptions, the analysis presented herein has provided
an understanding of the physics of the system. The frequency
determined to maximise spatial growth of a perturbation scaled
with respect to the cord lengthF+

max−sg = 1.64, was found to
be very similar to the frequency determined in the experiments
of [22] to maximise lift enhancment ofF+

max−li f t = 1.3. The
analysis has also highlighted that the associated instability is
convective in nature and that the excitation of shear layer is the
key physical mechanism for transition to turbulence.
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