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Abstract

The complexity of the collision term in the Boltzmann equation
for rarefied flows is such that it is often replaced by a model
equation such as the Bhatnagar-Gross-Krook (BGK) model [5].
To solve the BGK equation numerically a number of differ-
ent advection equations - one for each molecular velocity range
which is included in the numerical method - must be solved in
parallel. For a fixed time step, the CFL numbers for these differ-
ent advection equations can differ by an order of magnitude or
more. For a feasible time-step, and a reasonable computational
time, it becomes necessary to solve at least some of these lin-
ear advection equations with a CFL number much greater than
1. It is the purpose of this work to provide the groundwork for
solving the BGK method by presenting a fast, accurate solution
to the linear advection equation that is stable for CFL numbers
greater than 1.

Introduction

The design of an atmospheric entry craft requires an accurate
prediction of the local gas dynamic effects on the vehicle. For
rarefied entry trajectories, the flow transit time past the vehicle
is small with respect to the mean time between collisions; the
gas molecules are not in thermal equilibrium and there is no
single temperature that characterises the thermodynamic state.
In these conditions the Navier-Stokes equations are not valid.
Thus it becomes necessary to solve the Boltzmann equation
which describes the flow at the molecular level by considering
the effects of the free-flight and collisions on the distribution of
molecular velocities, or to resort to particle simulations.

The standard simulation method is the Direct Simulation Monte
Carlo (DSMC) method [6] which includes various collision
models, chemical reactions and thermal radiation. DSMC does
have its disadvantages, however. Simulations involve storing
large numbers of molecules and data, and the statistical colli-
sion procedure introduces scatter into the solution.

The complexity of the collision term in the Boltzmann equa-
tion is such that even simple flows are difficult to solve. The
Bhatnagar-Gross-Krook (BGK) model equation [5] (also pro-
posed by Weylander [22]), replaces the collision term by a
mathematically simpler source term which retains the important
features of the original equation but is easier to solve numeri-
cally.

The effect of the free-flight (convection) terms in the model
equation may be found by solving the linear advection equation
for each molecular velocity to set up a new non-equilibrium dis-
tribution function throughout the computational domain ateach
time step. Then the model collision term in the BGK equation
represents the effect of molecular collisions by a relaxation, at
a finite rate, of the velocity distribution function to the local
Boltzmann (equilibrium) distribution. It becomes necessary to
solve the linear advection equations as accurately and as quickly
as possible in order to ensure a reasonable computational time.

The range of the velocity distribution results in a large differ-
ence in CFL number between the smallest and largest veloc-
ity. If higher-order ‘finite-volume’ style solutions methods are
used the time step must be based on a small CFL number for
the largest molecular velocity in the solution. It is the purpose

of this work to provide the groundwork for solving the BGK
method by presenting a fast, accurate solution to the linearad-
vection equation that is stable for CFL numbers greater than1
in order to reduce computational time.

The BGK Model Equation

The BGK model equation is shown below in Equation 1, where
νM is the collision frequency andfM is the local Maxwellian
velocity distribution function.
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where the collision frequency is given by
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µ

The local Maxwellian velocity distribution function in three di-
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wherec2 = (u−u)2 +(v−v)2 +(w−w)2.

The BGK method conserves mass, momentum and energy;

Z Z

νM ( fM − f )ψα dv = 0 (3)

whereψα =
{

1,u,v,w, 1
2v2

}

andv = u+v+w.

The basic physical assumption underpinning the modified
Boltzmann equation is that the collision frequency is indepen-
dent of the relative speed of the colliding molecules [13]. This
assumption is satisfied strictly only for Maxwellian particles.

In recent years, the development of the gas-kinetic BGK model
equation method has been quite strong. Single and multidimen-
sional BGK methods have been developed. Aokiet al. [3] used
the model equation to solve for unsteady flow between two in-
finite parallel plates. Kimet al. [12] adapted a finite volume
gas-kinetic BGK method to unstructured triangular grids with
mesh adaption. Pieracciniet al. [18] developed a technique to
construct BGK schemes of any order accuracy in space in time,
while solving even very stiff problems quickly and easily.

One of the most significant drawbacks of the BGK method is
that it does not result in the correct Prandtl number. Holway[9]
introduced the ‘ellipsoidal statistics’ (ES-BGK) method in or-
der to fix this issue. The ES-BGK model [9] was developed
to adjust the BGK model to give the correct transport coef-
ficients for the Navier-Stokes equation by relaxing towardsa
Gaussian equilibrium distribution rather than a Maxwellian and
allowing for the addition of the Prandtl number to the collision
term. Andrieset al. [2] conducted some numerical comparisons
between this method, the standard BGK method and DSMC
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for transitional reentry flows that showed reasonable improve-
ments in most flow aspects. Chaeet al. [7] also improved the
BGK method by correcting the Prandtl number. Li and Zhang
[14, 15, 16] also modified the BGK method to correct for the
Prandtl number and removed the continuous dependence of the
distribution function on the velocity space through their discrete
velocity ordinate method. This model is of particular interest in
this work and will be described in detail in later sections.

Macrossan [17] developed the ‘relaxation time simulation
method’ (RTSM) by extending the Equilibrium Particle Simu-
lation Method (EPSM) of Pullin [19]. EPSM works in a similar
way to the Direct Simulation Monte Carlo (DSMC) methods,
but rather than simulating collisions, the momentum and energy
of the particles in each cell are redistributed to establishlocal
Maxwellian equilibrium at each time step. RTSM differs in that
only a fraction of the particles are adjusted to equilibrium.

In order to include descriptions of thermal nonequilibrium,
multi-temperature BGK methods have been developed in recent
years [11, 24, 25, 26]. Xuet al. [27] also developed a diatomic
gas BGK method with rotational and translational degrees of
freedom included.

Gross and Krook [8] extended the original BGK method to al-
low for two component gas mixtures. One major drawback of
their method is that when both species are defined identically,
the one component method is not recovered. Bhatnagar [4] also
continued development on this two component method, as did
Xu [23] and Sirovich [20]. In the paper by Andrieset al. [1],
a two component method is presented which satisfies positivity
and the entropy inequality, has the correct exchange coefficients
and degenerates to the single component model.

Solver Details

Three solution methods have been used in this work. The first
is a simple implementation of ray tracing, with linear interpo-
lation. The second method, the ‘large CFL advection method’
was developed to provide stable results with more accuracy than
the first order ray tracing method. The Riemann solution [10]is
the third method, included to allow a comparison of the method
results.

Linear ray tracing calculates the total distance that molecules
with each particular velocity value will have travelled over the
time step and locates the previous position of those particles.
Linear interpolation is used to find the percentage of molecules
from each of the two closest cells, and the distribution function
of the current cell is created from these cells for each velocity.

The large CFL method modifies this simple method by locating
the cell from which the molecule will have come and subtract-
ing the time taken to travel from the closest interface of this cell
from the total time step. The remaining time is then used to
solve the limited anti-diffusion method for the originating cell.
This provides more accuracy than the linear ray tracing method
that is equivalent to solving the upwind [21] scheme locally.

Figure 1 shows a graphical outline of the large CFL method.
This method insures that the local CFL number for the originat-
ing cell is always≤ 1.0 for stability. If the original location is
outside of the domain, it is given the boundary value.

The approximate (non-iterative) Riemann solver was developed
by Jacobs [10] and works in three stages. In the first stage, the
perfect gas relations are used to calculate the intermediate pres-
sure and velocity assuming that the cells interact via isentropic
compression or expansion waves. If the resulting pressure jump
is large, the interface state guess is improved with the strong
shock relations. The other flow properties are then calculated

Figure 1: Graphical description of the large CFL number
method. The local time step for the limited anti-diffusion
method component is the difference between that used to cover
the entire flight distance and that to cover the distance to the
originating cell interface.

from the pressure and velocity states calculated in the firsttwo
steps.

Results

Advection tests

A simple step function test was used to compare the accuracy
of the large CFL method and simple ray tracing. The results
are shown in Figure 2 (CFL number of 2.5) and Figure 3 (CFL
number of 10.5) for two different velocity values. The length of
which was set to 1.0 and it was discretized into 50 cells in the
case of Figure 2 and 500 cells for the results in Figure 3. The
final flow time was equal to 0.1×L/Vmax. For this test, a step
function was initiated in the leftmost cell and allowed to propa-
gate to the right over time. Only two velocity values were used
and these were both positive. A comparison is shown between
the first order ray tracing and limited anti-diffusion methods and
the exact step.

Modifying the method to solve the limited anti-diffusion
method locally increases the accuracy of the result as expected.
Unlike the standard limited anti-diffusion, however, thisresult
is stable for any CFL number. Results are not shown for the
negative velocity test case as they mirrored those from for the
positive velocities.

One dimensional shock tube problem

Results were generated for the one dimensional shock tube
problem with non-dimensional parameters. The BGK method
used was the traditional BGK method with no correction for
Prandtl number, but with two translational temperatures. On ei-
ther side of the discontinuity the initial bulk velocity wasset
to zero and the temperatures (in equilibrium) were set to 1.0. A
simple power law description of the viscosity was used, withthe
power being set to 0.75. A density decrease of 10 was initialised
from left to right.

The length of the grid used was 100 times the maximum mean
free path in the domain, coming to a value of 125.33 length
units. This was then normalised for plotting purposes. The do-
main was then divided into 200 cells.

The velocity space was generated based on the mean thermal
velocity in the initial state. The maximum velocity was six stan-
dard deviations above the maximum mean thermal velocity and
the minimum velocity, six standard deviations below the mini-
mum mean thermal velocity. This space was then divided into
a number of discrete cells - either 100 or 200 in the results fol-
lowing.
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Figure 2: Comparison of the accuracy of the large CFL method with ray tracing for a step function. The CFL number for the larger
velocity is set to 2.5 and the problem runs for 10 time steps. The step function is initiated by the left boundary cell valuebeing set to
1.0. These results are for the positive velocity case.

Results were generated for a number of cases:

1. Linear ray tracing with 100% BGK relaxation.

2. Large CFL method with 100% BGK relaxation.

3. Riemann solution for comparison with the two BGK solu-
tions.

The data was extracted after 100 time steps at a final solution
time of 12.533 time units. This resulted in a CFL number of
1.52 for the ray tracing and large CFL methods. A CFL number
of 1.0 was used for the Riemann solution and the number of
time steps adjusted accordingly.

Figure 4 shows a comparison between the Riemann solution,
the linear ray tracing method and the large CFL method for
an infinite number of collisions and 100 discrete velocity cells.
Figure 5 shows the same comparison with 200 velocity cells re-
spectively. It can be seen that the results from the large CFL
method correspond to those of the first order ray tracing and
that no improvement on the first order method is achieved.

Following the successful test of the infinite collision case, the
two advection methods were tested with the proper local BGK
collision frequency as described previously. Again, Figure 6
shows no improvement in results due to the more accurate ad-
vection step.

Conclusions

The purpose of this work was to develop an accurate method of
solving the linear advection step of the decoupled BGK model
for large CFL numbers. A modified ray tracing method was
developed which was more accurate than the first order linear
ray tracing method but which required less computational time
than standard solution methods for the linear advection equa-
tion. This reduction in computational time is simply due to the
smaller number of time steps required to solve the flow prob-
lems.

Results were presented for the one dimensional shock tube test
case with infinite collisions with a variety of physical and ve-
locity space grid sizes and compared to the Riemann solution.
Further data is shown for a simple BGK simulation of the one
dimensional shock tube problem. Although the large CFL ad-
vection method did improve the accuracy of the advection step,
the effect of the relaxation towards equilibrium negated the im-
provements in the one dimensional shock tube problem.
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Figure 4: Comparison of the large CFL method with ray tracingand the Riemann solution for 100 velocity cells and infinite collisions.
The solution final time is 12.533 time units over 100 time steps, resulting in a maximum CFL number of 1.52. For the Riemann
solution, the number of time steps is modified to reduce the CFL to 1.0. The ray tracing and large CFL method results are identical to
plotting accuracy.
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Figure 5: Comparison of the large CFL method with ray tracingand the Riemann solution for 200 velocity cells and infinite collisions.
The solution final time is 12.533 time units over 100 time steps, resulting in a maximum CFL number of 1.52. For the Riemann
solution, the number of time steps is modified to reduce the CFL to 1.0. The ray tracing and large CFL method results are identical to
plotting accuracy.
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Figure 6: Comparison of the large CFL method with ray tracingand the Riemann solution for 100 velocity cells with the standard BGK
method. The solution final time is 12.533 time units over 100 time steps, resulting in a maximum CFL number of 1.52. The ray tracing
and large CFL method results are identical to plotting accuracy.
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