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Abstract

Numerical experiments are conducted on the velocity field of
the Oseen vortex to determine the effect of random errors in the
velocity field on the circulation estimate. The circulation is es-
timated by either a velocity integral or a vorticity integral over
a particular region of integration. A novel method for the deter-
mination of this region is used. The accuracy of circulation esti-
mation schemes is characterised in terms of the velocity sample
spacing, the amount of random noise in the velocity field and
the vorticity estimation scheme used. It is found that, in gen-
eral, the velocity integral outperforms the vorticity integral in
terms of reducing total error.

Introduction

Over the last few decades Particle Image Velocimetry (PIV) has
become a commonly used experimental technique in fluid me-
chanics. The availability of the velocity field allows for the
estimation of derived quantities, such as vorticity and strain,
and integrated features such as streamline patterns and circu-
lation. PIV-derived velocity fields contain errors that are sub-
sequently transferred to any quantity estimated from the veloc-
ity field. Much attention has been given to the transmission of
errors from the velocity field to the vorticity field. In particu-
lar, Fouras and Soria [3] developed a framework by which this
transmission is quantified in terms of the velocity sample spac-
ing and the vorticity estimation scheme used.

Fouras and Soria [3] and Etebari and Vlachos [1] used the an-
alytic velocity and vorticity fields of the Oseen vortex to test
the accuracy of their respective vorticity estimation schemes.
They digitised the analytic velocity field over a grid of known
velocity-sample spacing (resolution) and then applied various
vorticity estimation schemes to the discretised velocity data.
They were then able to compare the resulting vorticity field to
the analytic vorticity field and thus quantify the effect of resolu-
tion on the vorticity estimate. They then added a known amount
of random noise to the discretised velocity field, estimated the
vorticity from the noisy velocity data and then compared the
vorticity estimate to the analytic value. This allowed them to
quantify the transmission of random error from the velocity to
vorticity field for various vorticity estimation schemes.

The present study aims to quantify the transmission of random
error from the velocity field to various estimates of the circu-
lation. We implement a similar methodology to that of Fouras
and Soria [3]. We use the analytic velocity field of the Oseen
vortex to generate a discretised velocity field to which we add
a known amount of random noise. The circulation is then esti-
mated from the noisy velocity field and compared to the analytic
value of the Oseen vortex circulation. The accuracy of the cir-
culation estimation schemes is then characterised in terms of
the velocity sample spacing, the amount of random noise in the
velocity field and the vorticity estimation scheme used.

Circulation

In two dimensions, circulation, Γ, can be expressed as either a
velocity integral (equation 1), or, by way of Stokes’ theorem, a

vorticity integral (equation 2).

Γvel =
I

c
(udx+ vdy) (1)

Γvor =
Z Z

S
ωzdS (2)

Here u and v are the velocity components in the x and y di-
rections respectively, ωz = ∂v

∂x − ∂u
∂y is the out-of-plane vorticity

component and S is an area enclosed by a closed curve C. Γvel
and Γvor are the circulation estimators that are to be tested.

The Oseen vortex

The Oseen vortex is an ideal vortex with analytically defined ve-
locity, vorticity and circulation. The tangential velocity and out
of plane vorticity of the Oseen vortex are specified by Saffman
[5] , in polar co-ordinates, as equations (3) and (4) respectively.

Vθ(r) =
Γ0

2πr
(1− e−r2/2L2

) (3)

ωz(r) =
Γ0

2πL2 (e−r2/2L2
) (4)

Here, Γ0 is the circulation and L is a length scale corresponding
to one standard deviation of the Gaussian vorticity distribution
of the Oseen vortex (equation 4). The radial velocity component
is zero.

Vorticity Estimation Schemes

Many different vorticity estimation schemes exist and different
schemes have different error propagation. Fouras and Soria [3]
demonstrated that errors in vorticity estimation can be decom-
posed into two, usually counteracting, components. The first is
a bias error component which represents the over or underesti-
mation by the scheme. The second is a random error compo-
nent which characterises the scheme’s susceptibility to random
noise in the velocity field. Fouras and Soria [3] showed that, for
the vorticity estimation schemes they considered, bias error and
random error can not be simultaneously reduced.

Commonly used schemes include explicit and implicit approx-
imations to the the first derivative, direct approximations via
Stokes theorem and analytic differentiation of fitted surfaces.
Five vorticity estimation schemes are tested with the two cir-
culation estimators, Γvel and Γvor. With the schemes presented
here the velocity data is assumed to be on a uniform grid of ve-
locity sample spacing, ∆. The indices i and j denote the x and y
directions respectively.

The central difference (CD) scheme directly estimates the first
derivative by f ′i ' fi+1− fi−1

2∆ . Raffel et al. [4] present a “least
squares” (LS) scheme that estimates the first derivative by f ′i '
2 fi+2+ fi+1− fi−1−2 fi−2

10∆ . Ferziger and Peric [2] describe an estimate
to the first derivative based on fitting a fourth order polynomial
to to five adjacent data points resulting in a finite difference
scheme given by f ′i ' − fi+2+8 fi+1−8 fi−1+ fi−2

12∆ . We refer to this
as the POLY4 scheme.
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A direct approximation to the vorticity at a point can by ob-
tained by equating the circulation within a region to the product
of the average vorticity and the region area as presented in Raf-
fel et al. [4]. This yields (ωz)i, j = Γi, j/Ai, j , where Ai, j = 4∆2

and
Γi j =

1
2

∆(ui−1, j−1 +2ui, j−1 +ui+1, j−1)

+
1
2

∆(vi+1, j−1 +2vi+1, j + vi+1, j+1)

−1
2

∆(ui+1, j+1 +2ui, j+1 +ui−1, j+1)

−1
2

∆(vi−1, j+1 +2vi−1, j + vi−1, j−1). (5)

We refer to this as the CIRC scheme.

Etebari and Vlachos [1] developed a fourth-order, hy-
brid, compact-Richardson extrapolation (CR4) finite-difference
scheme for estimating first derivatives. The CR4 method has
two stages. First-stage approximations are obtained by solving
the following implicit finite-difference equation for f ′i with i in
the range k +1≤ i≤ N− k:

1
4

f ′i−k + f ′i +
1
4

f ′i+k =
3
2
(

fi+k− fi−k

2k∆
). (6)

This equation is solved three times with k = 1, k = 2 and
k = 4 giving three different approximations 1 f ′i , 2 f ′i and 4 f ′i .
A weighted average of these gives the second-stage estimate of
the derivative:

CR4 f ′i =
272

1239
.(1 f ′i )+

1036
1239

.(2 f ′i )−
69

1239
.(4 f ′i ). (7)

With the CD, LS, POLY4 and CR4 schemes, the first derivative
estimates are used to estimate ∂v

∂x and ∂u
∂y and thus estimate the

vorticity, ω.

Numerical Experiments

Numerical simulations are conducted to determine errors in the
circulation estimates, Γvel and Γvor. These simulations are con-
ducted for differing values of added noise magnitude, εu, and
resolution, ∆/L, and for different vorticity estimation schemes.
It should be noted that the nature of the the CIRC vorticity esti-
mation scheme should result in both Γvel and Γvor being equal
when evaluated with the CIRC scheme.

Region of Integration, ROI, Determination

In order to evaluate Γvel and Γvor it is required that an appropri-
ate path or region of integration be chosen. Other authors such
as Fouras and Soria [3] and Weigand and Gharib [6] used a rect-
angular box that encloses the vortex core as the closed path for
evaluating the circulation. This box, however, may contain fea-
tures not pertaining to the vortex core under examination. This
is especially true in the case complex flows where structures of
opposite vorticity are in close proximity to each other. A more
appropriate choice of path is an iso-vortical contour encompass-
ing the required vortex core. The area of this region can be used
as the area S in the evaluation of Γvor and its perimeter can be
used as the closed curve C in Γvel . This region is dubbed the
region of integration, ROI.

An algorithm has been developed to determine the ROI within
velocity vector fields of grid spacing ∆. The algorithm first iden-
tifies the grid square corresponding to the maximum evaluated
vorticity within the measured flow field. This is the stating point
from which the ROI will develop. Each grid square adjacent to
the starting square is incorporated into the ROI if both of the
following conditions are met; (1.) the vorticity in that partic-
ular grid square exceeds or is equal to a user-defined vorticity
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Figure 1: An evaluated ROI overlayed on iso-vortical (CD) con-
tours of an Oseen vortex with added noise. The resolution is
∆/L = 0.353. The lowest vorticity level shown is ω = 0.05s−1

(black lines) and the increment is ω = 0.15s−1 (white lines).
The ROI is determined with ωT = 0.05s−1 and d = 4L.

threshold, ωT and (2.) the horizontal or vertical distance from
the starting grid square does not exceed a particular user defined
distance, d. This process is then reapplied to each of the newly
incorporated grid squares. This process is continued until the
ROI stops growing. Each grid square in the ROI is joined to
another grid square at a face or a vertex. There are no “stray”
agglomerations of grid squares that are not joined to the ROI.

Figure 1 shows an evaluated ROI overlayed on iso-vortical (CD)
contours of an Oseen vortex with added noise. The resolution is
∆/L = 0.353. The lowest vorticity level shown is ω = 0.05s−1

(black lines) and the increment is ω = 0.15s−1 (white lines).
The ROI is determined with ωT = 0.05s−1 and d = 4L. The
determined ROI can be seen to be a good approximation to the
ω = 0.05s−1 iso-vortical contour.

The circulation estimations are dependent on the vorticity es-
timation scheme used because the ROI is determined from the
vorticity field. The evaluation of Γvel is only indirectly depen-
dent on the vorticity as the vorticity is used in determining the
ROI and hence the path of integration. Γvor , however, is directly
dependent on the vorticity as it is the vorticity that is integrated
within the ROI.

Numerical Formulation

For the numerical tests conducted, the Oseen vortex circulation
is set to Γ0 =1 mm2/s and the characteristic length scale was set
to L=1 mm. The computational domain is −8L≤ {x,y} ≤ 8L.
The estimates of circulation, Γvel and Γvel , are obtained by im-
plimenting the following steps.

1. Using equation 3, generate the velocity field, ui, j , of the
Oseen vortex on the computational domain with grid spac-
ing ∆. This data is of resolution ∆/L.

2. Generate the noise-added velocity field, ũi, j , by adding
zero-mean white Gaussian noise of a particular magni-
tude, εu, to the velocity field ui, j :

ũi, j = ui, j +max(ui, j)N (0,ε2
u) (8)

Here max(ui, j) is the maximum value of ui, j in the entire
computational domain and N (0,ε2

u) is a normal random
variable with a mean of zero and a variance of ε2

u.
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Figure 2: Mean relative circulation error, Γ∗, verses input noise magnitude, εu, at a resolution of ∆/L = 0.25 for Γvel and Γvor.
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Figure 3: Standard deviations of relative circulation error, σΓ∗ , verses input noise magnitude, εu, at a resolution of ∆/L = 0.25 for Γvel
and Γvor.

3. Generate five noise-laden vorticity fields by applying the
five vorticity estimation schemes (CD, LS, POLY4, CIRC
& CR4) to the noise-added velocity field, ũi, j .

4. For each vorticity field, find the corresponding region of
integration (ROI) using a vorticity threshold of ωt =0 s−1

and d =4L.

5. Estimate Γvel by numerically integrating the noise-added
velocity field ũi, j around the perimeter of each of the five
regions of integration. This gives five estimates of Γvel .

6. Estimate Γvor by numerically integrating each noise-laden
vorticity field within the area of the corresponding regions
of integration. This gives five estimates of Γvor.

This process is conducted 8,900 times for each of 400 different
combinations of 0.05≤ εu ≤ 0.1 and 0.15≤ ∆/L≤ 0.5.

Results

The circulation estimates are used to generate the relative cir-
culation error, Γ∗ = Γ−Γ0

Γ0
, where Γ is the circulation estimate

and Γ0 is the circulation of the analytic noise-free Oseen vortex.
The mean relative circulation error, Γ∗, and the corresponding
standard deviation, σΓ∗ , for both Γvel and Γvor are determined

for the vorticity estimation schemes considered. The bias error
of the circulation estimate is Γ∗ and the random error compo-
nent is σΓ∗ . Both are functions of the resolution, ∆/L, and and
the noise magnitude, εu. Figures 2 and 3 show the dependence
of Γ∗ and σΓ∗ on noise magnitude, εu at a fixed resolution of
∆/L = 0.25. In general the bias error is an order of magnitude
larger than the random error.

It is clear from figure 2 that, for every vorticity scheme consid-
ered, Γ∗vel is always lower than Γ∗vor except in the case of the
CIRC method where they are equal. The CR4 and LS schemes
give the lowest Γ∗vel values.

Every vorticity estimation scheme transmits random error in the
velocity field to the vorticity field. Γvel integrates velocity com-
ponents to estimate circulation and only indirectly incorporates
the vorticity estimation scheme in determining the ROI. This is
the reason why σΓ∗vel

(figure 3) seems to have similar values for
all vorticity estimation schemes.

Γvor sums vorticity values to estimate circulation so it is di-
rectly dependent on the vorticity estimation scheme used. The
transmition of random error in velocity to vorticity was charac-
terised by Fouras and Soria [3] as a nondimensional ratio, λ0.
For LS, CIRC and CR4, λ0 < 1 meaning theses schemes re-
duce the random error from the velocity to vorticity. CD has
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λ0 = 1 meaning noise is neither amplified nor diminished and
Poly4 has λ0 > 1 meaning it amplifies noise. This is directly
manifested by the dependancy of σΓ∗vor

(figure 3) on the vortic-
ity estimation scheme. Poly4 shows a larger value of σΓ∗vor

than
σΓ∗vel

because λ0 > 1. As LS, CIRC and CR4 have λ0 < 1 , σΓ∗vor
is less than σΓ∗vel

for those schems.

The different ways in which Γvel and Γvor estimate circulation is
also the reason why, for every vorticity scheme considered, Γ∗vel
is always lower than or equal to Γ∗vor (figure 2). Fouras and Soria
[3] demonstrated that vorticity estimated from a noisy velocity
field will always contain both random and bias errors. Summing
vorticity to obtain circulation will always result in higher bias
error, Γ∗, when compared to numerically integrating velocity
components because of the error-adding step of obtaining the
vorticity from the velocity field.

If, however, low random error ,σΓ∗ , is of more importance than
bias error, Γ∗, then Γvor can be used. This is only true if Γvor
is used with a vorticity estimation scheme that reduces random
noise (λ0 < 1) such as LS (figure 3 for σΓ∗vor

).

Total error

The accuracy of each circulation estimate can be characterised

by the total error, Λ =
√

Γ∗2
+σ2

Γ∗ , that incorporates both the
bias and random error components.

The lowest values of Λ, over the computational domain, were
observed for Γvel used with the CR4 scheme and are shown in
figure 4. The total error can be seen to be up to about 13% of
the true circulation value. It is interesting to note that for a fixed
noise magnitude, larger total errors are observed for low values
of ∆/L which correspond to a high resolution. This is due to
the fact that more noise-laden velocity values are incorporated
in the integration about the ROI at a higher resolution than at a
lower resolution.

To demonstrate the relative accuracy of the schemes, the total
errors for all combinations of Γvel and Γvor with all the vorticity
estimation schemes are compared at fixed resolution and noise
magnitude. Figure 5 shows the total error (Λ) for all combi-
nations at ε = 0.05 and ∆/L = 0.25, relative to the total error
for Γvel used with the CR4 scheme (Λ0). The combinations
are ranked according to increasing relative total error ratio ( Λ

Λ0
)

and this ranking is consistent across almost all combinations of
noise magnitude and resolution. As expected, the CIRC scheme
resulted in equal values for Γvel and Γvor. When used with the
POLY4 scheme, Γvor can result in total error eight times that of
Γvel with CR4 resulting in a total error over 30%.

Based on the presented data, it is recommended that Γvel be
used over Γvor in estimating circulation with either the CR4 or
LS schemes for estimating vorticity. It should be kept in mind
that, in this situation, vorticity is only estimated to determine
the ROI at low vorticity levels.

Conclusions

Numerical experiments are conducted to determine the effect
of random errors in the velocity field on the circulation deter-
mined by a velocity integral (Γvel) or a vorticity integral (Γvor).
It is found that Γvel shows a lower bias error (Γ∗) than Γvor.
The random error of Γvel (σΓ∗vel

) is less susceptible to the choice
of vorticity estimation scheme than that of Γvor (σΓ∗vor

). Of the
schemes considered, Γvel used with the CR4 scheme displayed
the minimum total error (Λ) over almost all combinations of
noise magnitude and resolution. In terms of total error, Γvel is
superior to Γvor in estimating circulation for the vorticity esti-
mation schemes considered.
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