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Abstract 

Unmanned Aerial Systems (UAS) is recognised to be the next 

revolution in aviation as information technology matures in the 

aerospace sector. UAS systems are multidiscipline systems as 

they integrate several disciplines, e.g. avionics, flight control, 

aerodynamics, structures.  The design and optimisation of these 

vehicles can be multi-modal, non-convex or discontinuous, with 

multiple local minima and with noise. Traditional gradient based 

optimisation method might fail to find true optimal solutions or 

Pareto Fronts.  This paper explores the design and coupling of 

Meta-model Assisted (MMA) with Multi-Objective Evolutionary 

Algorithms (MOEA) for Unmanned Aerial Systems (UAS) 

design. Results indicate an improvement on optimisation 

performance and both practicality and robustness of the method 

in finding optimal solutions and Pareto trade-offs between the 

disciplines. 

 

Introduction  

Conceptual and detailed multidisciplinary optimisation seems to 

be one of the challenges for industry and academia [6]. Now the 

computation of real life flows such as that about a complete 

aircraft  which was until the end of the 60’ out of reach due to the 

limited performance and memory of computers  has now become 

a common task. On a different scale, researchers and engineers  

are now considering multi disciplinary challenges such as the 

strongly coupled aero-structural analysis. A logical extension to 

this progress is undoubtedly optimisation. Design and 

optimisation itself has emerged as a new discipline and most of 

the aerodynamic and structural optimisation efforts focus on the 

use of gradient based techniques. One drawback of these methods 

is that they are most suitable when there is only one objective (in 

a single discipline) to be met with or when the objectives are 

differentiable. At the same time a real design of any aerodynamic 

shape or for that matter of any entity will have usually more than 

one objective such as minimising drag at two different values of 

lift.  New robust techniques are required, one of such techniques, 

even though computationally more intensive than gradient based 

methods are Evolutionary Algorithms (EAs). These algorithms 

are based on Darwinian evolution; whereby populations of 

individuals, which represent the design variables, evolve over a 

search space and generate offspring by the use of different 

mechanisms such as mutation, crossover and selection. An 

attractive feature of EAs is that they evaluate multiple 

populations of points and are capable of finding a number of 

solutions in a Pareto front. EAs have been successfully applied to 

different aircraft, wing, aerofoil and rotor blade design and 

optimisation problems [1,2,6,10]. One major drawback of EAs 

[9] is that they are slow in converging, as they require a large 

number of function evaluations to find optimal solutions and 

have poor performance with increasing number of variables. 

Hence the continuing effort has been on developing robust but 

faster numerical techniques to overcome these challenges and 

facilitate the complex task of design and optimisation in 

aeronautics. In this work we describe the coupling of Design of 

Experiments (DOE), metamodel and MOEA for the design and 

optimisation of UAV systems.  

 

Meta-models/Design of Computers Experiments 
(DACE) Assisted Evolutionary Algorithms 
Introduction 
EAs suffer from slow convergence; by providing a 

DOE/metamodel capability into the framework we wish to 

hybridize the desirable characteristics of EAs and surrogate 

models such as Response Surface Methods (RSM) to obtain an 

efficient optimisation system [1]. Within this context, the DOE 

samples a number of design candidates run by the analysis code 

(CFD), the surrogate model is then constructed for the 

computationally expensive problem. Different sampling and 

DOE strategies can be used; Latin hypercube, RSM or 

DACE/Kriging. There is plentiful literature and software 

developed specifically for DOE, after a careful selection of 

software packages it was decided to implement the approach 

described in Reference 5 in combination with DACE  [8] which 

is robust and allows different options for sampling strategies and 

DOE.  

 

Different approximation and meta-model approaches in 

combination with EAs are studied in this research. Figure 1 

shows an EA assisted by off-line meta-models. In this case a 

global meta-model/DACE is constructed before the EA starts. 

This meta-model is used by the EA optimiser to evaluate 

candidate solutions and the 'optimal' (in the sense of evaluated 

with an approximation) solutions are re-evaluated with the exact 

high fidelity model to update the meta-model. The iteration loop 

continues until there is no discrepancy between the exact optimal 

solution and the 'optimal' one found using the meta-model. 

 

Implementing Kriging/Metamodel Assisted  HAPMOEA 

A Meta-model Assisted (MMA) coupled with Hierarchical 

Asynchronous Parallel Multi-objective Evolutionary Algorithms 

(HAPMOEA) was devised and tested.  The concept is illustrated 

in figure 1.  It combines a meta-model which can be 

DACE/Kriging or any other meta-model and the HAPMOEA 

technique. 

 

The HAPMOEA is based on Evolution Strategies and 

incorporates with the concepts of Covariance Matrix Adaptation 

(CMA) [3], a hierarchical topology [11], parallel evolutionary 

algorithms [2,12], asynchronous evaluation [2,13] and a Pareto 

tournament selection. The optimiser is applicable to single or 

multi-objective problems. The hierarchical topology offers 

different mathematical modellings of the environment including 

precise, intermediate and approximate models. In the different 
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layers of the topology each node can be handled by a different 

EAs code and or meta-model.  

 

When assisted by meta-model, the computational approach takes 

the following form: First the population is initialised and two or 

three models are defined, precise, intermediate and coarse. Then 

an initial design of experiments and local databases for the 

intermediate and coarse models are created.  The top level is 

evaluated with the exact / high fidelity analysis; the lower levels 

are evaluated using the meta-models. Then while a stoping 

condition has not been satisfied, the algorithm evolves the 

population at each level, at each level the algorithms do the 

processes of recombination, mutation, evaluation and selection. 

The algorithm checks if the migration criteria has been satisfied 

(this can be equal to a fix number of evaluations or a number of 

population size function evaluations). If a migration criterion has 

been satisfied, the algorithm sorts the populations; at the top level 

the population is sorted based on the fitness functions, while at 

the bottom level the populations are sorted based on the expected 

improvement. During migration the evaluated solutions from the 

top level are feed to update the meta-model. Following the 

original HAPMOEA, the algorithm migrates the third best of the 

population from the lower levels to the top levels and a random 

third of the population to the lower levels. In this process 

promising solutions from the lower levels are re-evaluated with 

the exact model and the meta-model is updated.  The 

optimisation continues on the top level using high fidelity 

analysis and on the lower levels using and improved meta-model, 

if the stopping criteria (max number of function evaluations – 

computational resources expired) has been reached the algorithm 

stops, compute statistics and produces outputs of the computed 

Pareto fronts and progress evaluations. 

  

 
Figure 1. HAPMOEAs assisted by on-line Meta-models 3.  

Kriging/Metamodel Assisted HAPMOEA Test Cases 

 

  

The concepts indicated in the previous section are best illustrated 

with an example in the following section. 

 
Multi-objective and Multidisciplinary Wing Design 
The use and development of Unmanned Aerial Vehicles for 

military and civilian applications are rapidly increasing but there 

are difficulties in the design of these vehicles because of the 

varied and non-intuitive nature of new configurations and 

missions that can be performed.  Similarly based to their manned 

counterparts, the challenge is to develop trade-off studies of 

optimal configurations to produce a high performance aircraft 

that satisfies mission requirements. It is always desirable to use a 

FEA for structural analysis or a Navier-Stokes solver for 

aerodynamics but sometimes this is prohibitive due to the 

computational expense involved. In this research a compromise - 

an analytical expression that describes the structural model and a 

potential flow solver - is used to demonstrate the workings of the 

methodology. 

 

Problem Definition 
The test case considers a multi-objective optimisation of an 

Unmanned Aerial Vehicle (UAV) wing similar to the Sperwer 

SAGEM UAV [5]. There are three objectives; maximisation of 

lift-to-drag ratio, (L/D), minimisation of pitching moment 

coefficient CM and minimisation wing weight (Wsc). The cruise 

Mach number is 0.69, the cruise altitude is 10000 ft. and the wing 

area is set to 2.94 m2. 

 

First, for the candidate solution –wing shape - the pressure 

distribution over the wing are computed using the potential flow 

solver in order to obtain the wing aerodynamics characteristics 

that include the span-wise pressure distribution, CL and, pitching 

moment CM and total drag coefficient (CD).  Then, the lift 

distribution is replaced by concentrated loads and the spar cap 

area is calculated to resist the bending moment. The weight is 

then approximated as the sum of the span-wise cap weight. The 

local stress has to be less than the ultimate tensile stress in this 

case for Carbon Fibre ≤ σult. The interaction between the 

aerodynamic pressure distribution and the structural deflections is 

ignored (loosely coupled multi-physics). 

 

The complexity, non-linearity and multi-objective characteristics 

of this problem make it suitable to be solved by an EA optimiser. 

The computational cost is an important consideration, open wide 

upper and lower bounds in the search space and depends of the 

computing facilities used, in particular in industrial design 

environments. Therefore it is also desirable to use both parallel 

computations and a multi-fidelity approach.  

 

The wing geometry can be represented with up to 57 design 

variables with three aerofoil sections and nine variables for the 

wing plan form. Figure 2 llustrates the design variables that can 

be considered for the optimisation. In this case the same aerofoil 

along the span the RAE2822 and only six design variables are 

used for the  wing plan form. 

 
 

Figure. 2 Design variables for multidisciplinary wing design. 

 

Analysis Tools 
The aerodynamic characteristics of the wing configurations are 

evaluated using the FLO22 software. FLO22 is a  3-D full 

potential analysis software developed by A. Jameson and D. 

Caughey for analysing inviscid, isentropic, transonic shocked 

flow past 3-D swept wing configurations [4]. The algorithm is 

based on free stream Mach numbers limited by the isentropic 

assumption and weak shock waves are automatically captured 

wherever they occur in the flow. Also the finite difference form 

of the full equation for the velocity potential is solved by a 

relaxation method, after the flow exterior to the aerofoil is 

HAPMOEA 
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mapped to the upper half plane. The mapping procedure allows 

exact satisfaction of the boundary conditions and use of local  

field supersonic velocities. Details on the formulation and 

implementation can be found in Reference [4]. 

For the structural analysis the lift distribution is summed into 

concentrated loads. The wing weight is estimated from the wing 

spar cap area designed to resist the bending moment.  

 
Three approaches are compared:  

 

1) Single Population 

 

• No meta- models are used. 

• EA with CMA/Pareto tournament selection, 

Asynchronous Evaluation. 

• Population size of 30, intermediate recombination used 

between two parents. 

• All individuals are evaluated using a potential flow 

solver with a mesh size of 96 x 12 x 16.  (Note: a study 

was undertaken to determine mesh resolution 

requirements, a  96 x 12 x 16 was accurate for this 

problem) 

 

2) Meta-model -static- assisted HAPMOEA (MMA-static 

HAPMOEA) 

 

• Meta-model is constructed before optimisation starts. 

• Meta-model is not updated. 

• EA with CMA/Pareto tournament selection, 

Asynchronous Evaluation. 

• Hierarchical Topology with two levels. 

Top Layer: A population size of 30, intermediate 

recombination used between two parents. The exact –

potential flow solver with a mesh size of 96 x 12 x 16.   

Middle Layer: A population size of 30, discrete 

recombination used between two parents, and use of 

the meta-model for the evaluation of each candidate 

wing. 

 

3) Meta-model -dynamic- assisted HAPMOEA (MMA-dynamic- 

HAPMOEA) 

 

• Meta-model is constructed before optimisation starts. 

• The algorithm described in figure 1 is used in this case.  

• Meta-model is updated at each migration step. 

• EA with CMA/Pareto tournament selection, 

Asynchronous Evaluation. 

• Hierarchical Topology with two levels. 

Top Layer: A population size of 30, intermediate 

recombination used between two parents. The exact –

potential flow solver with a mesh size of 96 x 12 x 16.   

Middle Layer: A population size of 30, discrete 

recombination used between two parents, and use the 

meta-model for the evaluation of each candidate wing. 

 
Optimisation Results and Post-processing of Optimal 
Solutions 
Figure 3 shows a comparison of the exact evaluated points (red –

circles- with the highest fidelity solver) and the results of the 

predictor (crosses-light green). As expected, the value of the 

prediction for a sample point matches the exact evaluation.   

 

 
 

Figure 3.UAV Wing –Sample points evaluated with high fidelity solver 

(red –circle) and Predicted values (light green -crosses). 

 

The optimisation was run for 500 function evaluations. Figure 4 

and 5 shows the Pareto fronts obtained by using the three 

approaches, figure 4 shows a 3D representation, and figure 5 

shows the projection for objective 1 and 2.  By comparison we 

can see that the use of a multi-fidelity meta-model dynamic 

assisted EA approach provides a lower Pareto front as compared 

to a single model and the meta-model –static- assisted 

HAPMOEA approach. In addition dynamic assisted took 0.43 to 

reach the same front as the single population approach while the  

–static- assisted HAPMOEA took in average 0.55 to obtain the 

same Pareto Front as the single population approach. For 

illustration purposes a compromise design, Pareto member ten 

(PM10), taken from the middle of the Pareto set is taken for 

evaluation. Figure 6 shows the Cp distribution at 10, 20, 40,  60, 

70, 80, 90% of the wingspan. Table 2 indicates the design 

variables and objective function values for this member of the 

Pareto front. 

 
 
Figure 4. Comparison of Pareto fronts after 500 function evaluations 

(Single Population- blue dots, meta-model-static- assisted HAPMOEA – 

pink triangles, meta-model-dynamic- assisted HAPMOEA – red 

diamonds).  

4. Conclusions 

 

The use of Metamodel Assisted HAPMOEAs was explored. 

Results indicate a computational gain on using the meta-model 

assisted hierarchical topology as compared to a single model 

during the optimisation. 

Improvement Direction 
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Figure 5. Comparison of Pareto  fronts projection: Fitness objective  1 

(maximisation lift-to drag) and fitness objective 3 ( minimisation of 

weight) after 500 function evaluations (Single Population- blue dots, 

meta-model-static- assisted HAPMOEA – pink triangles, meta-model-

dynamic- assisted HAPMOEA – red diamonds). 

                                                                       

 
Figure 6. Cp distribution for Pareto Member 10. 

 

 
Description Value 

Wing Aspect Ratio [AR] 2.38403 

Break to root Taper [λbr] 0.923232 

Break to tip Taper [λbt] 0.43364 

Wing 1/4 Chord inboard Sweep, deg 
[Λi] 

17.8782 

Wing 1/4 Chord outboard Sweep, deg 

[Λo] 
27.521 

Angle of Attack  0.0680236 

Break Location,  [bl] 0.210697 

Lift to Drag Ratio [L/D] 12 

Moment Coefficient, CM 0.0040063 

Weight 2.14688 

 
Table 2: Optimum design variables for UAV wing Pareto Member 10. 

 

The algorithm was capable of identifying the trade-off between 

the multi-physics involved and provides aerodynamic shapes as 

well as alternative configurations from which the designer can 

choose and proceed into more detailed phases of the design 

process. Further work on refining the model and comparing it to 

other meta-model approaches is underway. 
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