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Abstract 
There are various fluid mechanics problems which need to be 
considered, both internally and externally during the flight of a 
ramjet.  During the design and subsequent launch of our Mach 
1.8 ramjet, several issues were investigated such as the 
formation, position and importance of shockwaves within the 
ramjet, design of a flame holder to encourage required flow 
recirculation within the combustion chamber, flow associated 
with the delivery of liquid fuel, and the effect of outer profile on 
external drag.  In addition to these fluid mechanics problem, the 
theoretical and practical considerations of making ramjets work 
and present flight data are discussed. 
 
Introduction  
As our final year group design project, we designed, fabricated 
and launched a captive carry Mach 1.8 ramjet (as shown in 
Figure 1) in Woomera as the payload of a Zuni rocket as part of 
the Australian Space Research Institute’s Small Sounding Rocket 
Program.  The Zuni rocket contained a recoverable 
instrumentation payload which was used to monitor performance.  
This project was conducted under the Mechanical and Space 
Engineering program at the University of Queensland and was 
aimed at giving project based learning experiences to 
undergraduate students. 
 
Ramjets, which are a form of air-breathing propulsion, have the 
potential to be used as an intermediate propulsion phase between 
the slower turbojets and faster scramjets thus are of much benefit 
to ongoing scramjet research.  
 
Design issues and choice of parts 
The configuration of the launch was such that our ramjet was 
attached to a Zuni rocket motor and accelerated up to the desired 
operational velocity of Mach 1.8.  At this time the Zuni would 
stop firing and the ramjet would engage.  The predicted thrust of 
the ramjet was enough to overcome the drag forces of the 
Zuni/ramjet, and therefore it was important to ensure our design 
could operate effectively over a range of velocities. 
 
 

 
Figure 1: Cross-section of the entire ramjet. 

 
Pitot inlet 
In general, pitot inlets are the least efficient of all the types of air-
breathing propulsion inlets, however the difference in efficiency 
at low supersonic speeds such as Mach 1.8 is not significant.  
Efficiency is quantified in terms of the amount of pressure 
recovery across the inlet.  For a pitot inlet, the pressure recovery 
is simply the pressure recovery across a normal shock, since this 
is the only shockwave which forms in a pitot inlet.  Furthermore, 

pitot inlets can successfully operate over a range of velocities 
which made them favourable for our ramjet. 
 
Nozzle 
The nozzle was required to accelerate the flow from a subsonic 
speed exiting the combustion chamber to a supersonic speed 
exiting the aircraft.  For the flight conditions our ramjet required 
a converging diverging nozzle to produce supersonic exhaust 
flow. Due to the captive carry design constraint, an annular 
nozzle was used to direct flow around the outside of the vehicle. 
The main design criteria were to choke the flow at the throat and 
correctly expand the flow to the design conditions in a direction 
as close to axial as possible. The nozzle had a rounded throat to 
reduce internal shockwaves during expansion. 
 
Flame holder 
The flame holder provides flame stabilization by inducing 
turbulence into the flow which produces both recirculation and 
mixing regions.  As gas flows past the flame holder, a large 
portion of it would travel through these recirculation and mixing 
zones indicated in Figure 2, which increase the residence time of 
the gas.  Hence placing the source of ignition within these 
regions where the residence time is higher would increase the 
chance that flame stabilization will occur. 
 
Having the longest residence time or largest areas of recirculation 
and mixing produces the best conditions for flame stabilization.  
For a particular flow and geometry of flame holder, the residence 
time is proportional to the blockage ratio: the ratio of cross 
sectional area of the flame holder to flow.  This parameter is 
limited in that the flame holder must not be so large that it will 
choke the flow.   
 

 
Figure 2: Dimensions used in flame-holder design [7] 

 
Pitot Tube 
To obtain data from the flight a pitot-static tube was used for 
measuring total and static pressure.  It protruded from the front of 
the ramjet intake so that free stream conditions could be 
measured. Therefore it was important that the conditions at the 
inlet were disturbed by the shock waves created by the Pitot tube. 
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