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Abstract

In this study, the accuracy of d-turbulence model was
improved for hydrodynamics predictions of underwate
vehicles. The closure coefficients were optimisgdapplying

an algorithm called Surrogate Management Frame\piorR]
and comparing with the experimental data of SUBOFF
submarine model. The outcome revealed the sengitofi
RANS accuracy with respect to various closure coieffits,
and highlighted the improvements achieved from gidime
optimised coefficients.

Introduction

Computational Fluid Dynamics (CFD) is developing iato
important tool for evaluating the stability and roanvrability

of an underwater vehicle. Reynolds Averaged Navieké&s
(RANS) equations are commonly solved to predict the
pressure and friction forces around the vehicleestigations
carried out by [3] had shown that the accuracy &NB
predictions was strongly dependent on the turb@emodel
employed in the calculation, and that some diffeesnexisted

in the hydrodynamic predictions of underwater vihic

One approach to improve the accuracy of RANS ptiedis is

to optimise the closure coefficients in the RANSbtdence
model. These coefficients by nature are arbitraheir values
have been derived from generic flow cases, such as
homogeneous isotropic turbulence, turbulent mixiager
flows, etc. As a result, it is likely that the eitig) coefficients
may not be optimal for accurate modelling of undeer
hydrodynamics.

In this paper, a study was undertaken to optintigectosure
coefficients of the standard Wilcoxdsturbulence model [4].
The optimisation was carried out based on the chte flow
over a SUBOFF bare hull at static drift incidencel@f. The
optimisation algorithm called Surrogate Management
Framework (SMF) was utilised to ensure a converge¢adhe
global optimum solution.

SMF Optimisation Algorithm

The SMF is an optimisation algorithm that uses aogate
surface to represent the objective function in\gegidesign
space. As outlined in [2], the surrogate-based ritgn
possesses several advantages over other algoriftirss.the
surrogate surface provides a visual aid in undedstg the
input and output relationship. This feature is ipatarly
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useful in making trade-offs among competing objesi
Second, the surrogate surface in some cases caatindhe
probable locations of global optimum solution. Téfere, the
optimisation attempt can be focused on those dpeeijions.

Third, the surrogate-based algorithm allows for tiplé data
acquisitions prior to and during the optimisationgess. This
flexibility allows for a significant enhancement ithe
convergence rate. Lastly, a speed-up in the opiiis
process can also be gained by re-using the dataspéor
optimising different objective functions.

References [1] and [2] recommended using Kriging
interpolation function to generate the surrogatdases. A
Kriging function uses a statistical interpretatimindata points

to construct surfaces. The values of surrogateacesf are
exact at the location of data points and are laestirate in-
between data points. The Kriging function also jpdes a
statistical error estimate that can be utilisedniprove the
robustness and convergence rate of the SMF algurith

The present SMF algorithm uses the same formulasothat
in [1]. Data points are forced to lie on a fictibmaesh with
uniform spacings. The optimisation cycle consiststwo
steps — SEARCH step and POLL step. In the SEARCH atep,
surrogate surface is fitted onto the data pointg] #he
resulting surrogate function is evaluated at alsimeoints.
The SEARCH algorithm subsequently looks for a sute@ga
value that improves the current-best optimal pdiinthis is
successful, the objective function (i.e. CFD caltialg is
evaluated at that mesh point. The new data poiatdded to
the data set and the SEARCH step is repeated.

When the SEARCH algorithm fails to find a better sgate
value, the SEARCH process is terminated and the P&éh
begins. The aim of POLL step is to examine the eogence
of current-best optimal point. This is done by ewading the
objective function at mesh points neighbouring tptimal
point. These neighbouring points are called POLIin{s0 and
are selected in a positive spanning set of direst{see [1]).

The POLL step is successful if one of the POLL fm®in
improves the current-best optimal point. The nevinpds
added to the data set, and the optimisation praetsms to
the SEARCH step. If the POLL step is unsuccessfelntiesh
spacing is halved and the process returns to t#REH step

as well. The optimisation cycle is terminated by a
convergence criteria applied at the end of POLp.ste



1D Test Case

To illustrate the optimisation process, the SMFoatgm was
used to locate the global minimum in the followiolgjective
function

f (x) = €% cos (57x) (1)

where x 0] 0, 1]. This objective function represents a damped

oscillation problem where multiple minima existtire design
space. The exact location of global minimum isxat 0.192
and f(x)=-0.6758 Figure 1 shows the profile of the
objective function.

The optimisation process was started using thriglinlata
points (see Fig. 1). After three cycles, it retarree current-
best optimal point atx =0.19 and f(x)=-0.6754. This
prediction was fairly accurate already with a maxmerror
of 1.04%. The optimisation was considered converajer
six cycles where the errors had dropped to beld#e0.

Figure 2 shows the evolution of surrogate functiothe first
three cycles. The initial and®tycle surrogate functions
clearly showed poor representations of the objedimction.
However as the optimisation was iterated, the sepr@tion
was improved, especially in the vicinity of globainimum
where ample data points were collected. It sho@dnbted
that an exact representation of the objective fands not the
goal of SMF as it requires an excessive number lates.
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Figure 1: One-dimensional objective function alamith the
initial data points and initial surrogate function.
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Figure 2: Evolution of surrogate function in thesfithree
optimisation cycles.
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SUBOFF CFD Set Up

The turbulence model optimisation was conductedtton

benchmark case of the flow over SUBOFF model.
SUBOFF model is a generic submarine model that leas b

extensively studied in both experimental and coripanal

researches. It was originally designed by David Idiay

Research Center [5, 6] in 1989 to evaluate the acgush
CFD tools available at that time. The validationadatere
provided by Roddy [7] and Huang et al. [8] using itoyvtank
and wind tunnel measurements.

The present CFD set-up was identical to that in [3je
SUBOFF bare hull model was set at a static drifidiacce of

10°. The hull has a length df = 4.35€¢ m and a maximum
diameter of D=050¢ m. It was embedded inside a
computational box of size6L x4L x2L. The freestream
velocity was set tdJ = 3.23 m/s, giving a Reynolds number

of 14 millions.

The mesh was generated using ICEM-CFD software.

consisted of structured Hexahedral elements ardhedull
and unstructured Tetrahedral elements in the &ld f{see
Figs. 3 and 4). The high quality Hexahedral elememtre
aimed at providing a good resolution to the impurtow
structures such as the hull boundary layer, wa&kl fiand
off-body vortices. The entire mesh contained 1.4lioni
Hexahedral elements and 0.6 million Tetrahedrahetds.
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Figure 4: Tetrahedral mesh elements in the fad fiel
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Turbulence Model Optimisation

The RANS calculation employed the standard Wilcew k
turbulence model in FLUENT software [9]. Referen& [
reported an average error of 5.1% in the axialédqr€), yaw
force (Y) and yaw momentN) predictions using the default
closure coefficients. The reference experimentdh deere
Xexp = 0.001064 Y, =0.002394and Ng,, = 0.001942

In this study, an attempt was made to improve tioeiracy of
the kw model via optimising the closure coefficients, and

Bi. These coefficients are related to the productaom

dissipation of specific dissipation rate)(respectively. The
optimisation was performed using the SMF algoritiFhe

objective function was defined as the average énrdine X,

Y and N predictions.

To ensure the capturing of global minimum, a ladgsign
space of 0.1<a,<1.6 and 0.0¥ 5,<0.2 was selected.

However, it was discovered that the optimisatiomcpss
would take a considerable amount of time to expltre
design space and reach a converged solution. Tbisgm
was caused by the manual information passing betwiee
SMF program in MATLAB software and the CFD evaloas
in FLUENT software.

In response to the lack of an automatic informagpassing,
an alternative approach was employed where multGi®

evaluations were performed in parallel to speedhgdata
acquisition. A surrogate surface was fitted on®dhata points
and provided an overview of the objective functiéigure 5
shows the contour lines of the surrogate surfaee. &d blue
contours correspond to regions of high and low ritages of
the average error respectively.

The surrogate surface demonstrated the highly lasmiy
nature of the objective function. It also revealbd probable
regions of global minimum (i.e. regions of smallesterage
error). These regions were marked by dark blueczoatthat
extended diagonally across the design space. Foliptiis
finding, a smaller design space was formulated redothe
dark blue regions, and the SMF optimisation wasi@érout
within this design space.

The distribution of initial
dimensional full factorial sampling with nine leseh a,, and

data was based on a -4wo

five levels in B,. The optimisation converged to the global

minimum after five cycles. The optimum closure doénts

were found to bea = 0.283 and 5= 0.0474. They yielded
an average error of 1.55% in the force-moment ptiedis.

This outcome demonstrated a 70% improvement inkthe
turbulence model. The initial and final surrogatefaces are
given in Figs. 6 and 7 respectively. The contoueldas been
confined between 0 and 0.2, illustrating the regiohaverage
error up to 20%.

Figure 8 shows the contours of pressure on the dwrface
and velocity magnitude at several axial locatiomke red
pressure contour at the bow marked the locaticstagfnation
point, while the dark blue contour indicated a guctegion at
the leeward side of the bow. The velocity contorasged
from 2 m/s to 3 m/s. They demonstrated the growth
boundary layer and the shedding of cross-flow eesdiin the
stern region.

(o]
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Figure 5: Surrogate surface over discrete datatpomthe
initial design space.
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Figure 6: Surrogate surface over initial data poiirt the
reduced design space. Contour level is betweerd @an

Bi

Figure 7: Final surrogate surface after the opttis
converges. Contour level is between 0 and 0.2.



Figure 9 gives the axial pressure distribution leenwindward
and leeward sides of the hull. The leeward side sthasvn to
have a much lower pressure in the bow region, bet t
difference diminished in the mid section. At tharsbf stern
region, the pressure on the windward side expegtiaclarge
drop in magnitude. However it recovered fairly daycclose
to the end cap region.
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Predictions using the default coefficients and rosed
coefficients were also provided in Fig. 9. They chad well
in most parts of the hull, but some differencesenanserved

‘ e in the stern region (see Fig. 10). These differsnce
o corresponded to the relatively higher rate of tlehoe
—— dissipation in the stern region.

Contours of velocity Magnitude (mi's) Jul 18, 2007 . ) R )

FLUENT'6.2 3d, SEareasted. 2l As mentioned earlier, the surrogate surface in Sigerithm

can be used to analyse the sensitivity of varicaraipeters.

Figure 8: Contours of pressure on SUBOFF hull agidaity In this case, the impact of varying closure cogdfics was
magnitude at several axial locations. examined for each force/moment prediction.

Figures 11 - 13 show the prediction errors of afdate, yaw

force and yaw moment respectively. The dark blggores of

low error were consistent in all surrogate surfacesis

T T T T T implies that there is no conflicting objective lretk-w model

i optimisation. Moreover, the linear distribution d&rk blue

regions suggests that there could be a linearioakitip
between the coefficients,, and ;.

Default coeff., windward side

— — - Default coeff., leeward side

06

Optimised coeff., windward side

—— Optimised coeff., leeward side

Conclusion

04

In  conclusion, the SMF optimisation algorithm has
successfully modified the RANS &-closure coefficients to
improve the agreement between the CFD model and the

°F experimental data. A 70% improvement in the hydnaafyic

L 1 force-moment predictions was achieved by using the
02f / . - -
} / 1 optimised  closure coefficients of a,=0.283 and
04 ;’\f _ B;=0.0474. Furthermore, the sensitivity analysis usimg
T ; — o 4 surrogate surface suggested that there could biear|
X relationship betweer,, and S;. This finding is potentially

Figure 9: Comparison of predicted axial pressustrithutions useful in future developments of RANS turbulencedeio

using the default and optimised coefficients.
Reference

[1] Marsden, A.L. (2004)Aerodynamic noise control by
optimal shape design, PhD Thesis, Stanford University.
03 T T T

1 [2] Jones, D.R. (20014 taxonomy of global optimisation
I 1 methods based on response surfaces, Journal of Global
1 Optimization, v.21, pp.345-383.

[3] Widjaja, R., Anderson, B., Chen, L. and Ooi, (R007)
RANS simulations of SUBOFF bare hull model, DSTO-

GD-0497.
Detauk cout, windward side \ [4] Wilcox, D.C. (1998) Turbulence modelling for CFD,
| — — - Defautt coeft, leeward side \\\\ \ // i 2nd ed., DCW Industries.
[ vt ot g NI
- " ’ N [5] Groves, N.C., Huang, T.T. and Chang, M.S. (0989

o ' . Geometric characteristics of DARPA SUBOFF models,
1 DTRC/SHD-1298-01.

* ! x e [6] Liu, H.L. and Huang, T.T. (1998ummary of DARPA
. . SUBOFF experimental program data,
Figure 10: Inset from Fig. 9. CRDKNSWC/HD-1298-11.

1484



Bi

Figure 11: Surrogate surface of the error in aXiice
prediction.
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Figure 12: Surrogate surface of the error in yawcdo
prediction.
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Figure 13: Surrogate surface of the error in yawmmaot
prediction.
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