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Correcting cold wire measurements in isotropic turbulence with a DNS database
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Abstract

We estimate the effect of the finite spatial resolution of a

cold wire for scalar measurements, using a database from di-

rect numerical simulations (DNS). These are for homogeneous

isotropic turbulence at low Taylor-microscale Reynolds num-

ber (≃ 42) and Schmidt number unity. Correction factors for

the scalar variance, scalar mean dissipation rate, and mixed

velocity-scalar derivative skewness are evaluated, for a sensor

length of up to 15 times the Batchelor length scale. The largest

attenuation effect is found on the dissipation rate, followed by

the scalar variance. The mixed skewness, which is affected the

least, is overestimated.

Introduction

Measurements in turbulence can be seriously degraded, if the

spatial resolution of the probe is inadequate. For example,

small-scale quantities such as the dissipation rates of velocity

and scalar fluctuations are underestimated, when the size of the

sensor is significantly larger than the dissipative length scales.

These are the Kolmogorov length scale η (= ν3/4ε−1/4, where

ν is the kinematic viscosity and ε is the mean energy dissipa-

tion rate) for the velocity, and the Batchelor length scale ηB

(= ηSc−1/2, where Sc = ν/νθ is the Schmidt number and νθ is

the scalar diffusivity) for the scalar. As the Reynolds number

increases, η and ηB become smaller, and the resolution wors-

ens, for a given probe size. Although numerical simulations of

turbulence are not immune from resolution issues, the situation

improves, as the computing resources increase. On the contrary,

the size of a typical hot/cold wire has not changed for decades,

and therefore procedures that compensate for the probe attenu-

ation remain topical.

Wyngaard [15, 16] proposed a spectral method for correcting

hot/cold wire measurements in isotropic turbulence. Given an

analytical three-dimensional (3D) spectrum for the kinetic en-

ergy or the scalar variance, the one-dimensional (1D) spectrum

is derived through isotropic relations, so that the averaging ef-
fect due to the length of the sensor can be estimated and cor-

rected. Wyngaard’s approach is currently applied in measuring

with these instruments [6, 5], which are still unsurpassed for the

experimental analysis of small-scale turbulence at high tempo-

ral and spatial resolution. A slightly different procedure con-

sists in using an experimental expression for the 1D spectrum

measured at low Reynolds numbers, so that it is fully resolved

[1]. Mi and Nathan [10] simulated the effect of poor temporal

resolution by digitally undersampling the scalar signal, which

was acquired in the far-field of a jet. Although they found

close agreement with estimates of underresolved scalar mea-

surements from the literature, they noted large differences with

respect to Wyngaard’s prediction. To date, there is no direct

validation of Wyngaard’s method in isotropic scalar turbulence.

Nevertheless, providing such validation is important, because

cold wires are still widely used for scalar measurements.

Fully resolved simulations of homogeneous isotropic turbu-

lence make it possible to test directly the averaging effect due to

the sensor size. Filtered or ‘measured’ turbulent quantities can

be estimated by averaging locally the instantaneous (velocity or

scalar) field across an ideal wire, e.g. [3, 13]. In the present

work, we use a DNS database of isotropic scalar turbulence to

study the effect of the probe resolution. Starting from the origi-

nal fields, filtered surrogates are generated and, from these, cor-

rection factors for the scalar variance, mean dissipation rate, and

mixed velocity-scalar derivative skewness are estimated. This
latter quantity has never been considered in the literature from

the viewpoint of resolution corrections. The mixed skewness

is related to the scalar transfer, and its value is often quoted to

show that scalar turbulence is fully developed [2, 4].

Analysis of the Attenuation

The present analysis applies to an idealised probe for scalar

measurement (e.g. temperature), since it is assumed that the

sensitivity of the wire is uniform over its length and is not af-

fected by velocity fluctuations. Further, the probe does not in-

terfere (aerodynamically or thermally) with the flow. With these

hypotheses, the filtering effect due to the wire finite size can be

readily expressed in physical space. Consider a sensor of length
ℓ, parallel to the x2-direction, and measuring the scalar value in

the x1-direction, figure 1. In the experiment, the x1 axis is in

the direction of the mean flow. The averaging over ℓ of the true

scalar field θ is given by the convolution integral

θ∗ (x1,x2,x3;ℓ) =
∫ ℓ/2

−ℓ/2
f
(

x2−x′2
)

θ
(

x1,x
′
2,x3

)

dx′2, (1)

where f is the filtering kernel and x′2 is a dummy integration

variable (hereafter, the asterisk denotes a filtered quantity). The

hypothesis of uniform sensitivity translates into f
(

x2−x′2
)

be-

ing equal to 1 for
∣

∣x2−x′2
∣

∣≤ ℓ/2, and 0 otherwise (the rectan-

gular step function). In spectral space, (1) becomes

θ̂∗ (k1,k2,k3;ℓ) = f̂ (k2;ℓ) θ̂(k1,k2,k3) (2)

(the hat indicates the transformed variables), where the trans-

form of the filtering kernel, or sensitivity, is

f̂ (k2;ℓ) =
sin(k2ℓ/2)

(k2ℓ/2)
, f̂ (0) = 1. (3)

As customary, we introduce the scalar power spectrum

φθ (k) = φθ (k1,k2,k3) =
∣

∣θ̂(k1,k2,k3)
∣

∣

2
, (4)

Figure 1: Sketch of the cold wire with coordinate system.
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(where k is the wavenumber vector), related to the 3D spectrum

function Eθ(k) — or simply 3D spectrum — by

Eθ(k) =

∫

S
φθ (k)dS(k) . (5)

The integral is carried out over thin spherical shells S centred

at k, the wavenumber magnitude. Since in isotropic turbulence

there is no directional dependence, one has

Eθ(k) = 4πk2φθ (k) . (6)

The true (i.e. unfiltered) 1D spectra of the scalar variance and

dissipation rate in k1-direction are

Eθ1 (k1) = 2

∫ ∞

−∞

∫ ∞

−∞
φθ (k1,k2,k3)dk2dk3 (7)

Dθ1 (k1) = 3νθ

∫ ∞

−∞

∫ ∞

−∞
k2

1φθ (k1,k2,k3)dk2dk3, (8)

where the factor 3 in the latter equation is due to isotropy. In-

tegration of (7) and (8) over k1 yields the scalar variance and
mean dissipation rate, respectively

σθ =

∫ ∞

0
Eθ1 (k1)dk1 (9)

εθ =
∫ ∞

0
Dθ1 (k1)dk1. (10)

The filtering effect of the probe can be estimated by replacing

φθ with φ∗θ in (7)–(8) and, therefore, in (9)–(10). In particular,

the correction factors for the scalar variance and dissipation rate

are defined as

Rθ (ℓ) =
σ∗θ (ℓ)

σθ
(11)

Rε (ℓ) =
ε∗θ (ℓ)

εθ
. (12)

Knowing (11)–(12), one can correct the data measured by a

probe of length ℓ.

In physical space, the mixed velocity-scalar derivative skewness

is

Suθ =−

〈

(

∂u1

/

∂x1

)(

∂θ
/

∂x1

)2
〉

〈

(

∂u1

/

∂x1

)2
〉1/2 〈

(

∂θ
/

∂x1

)2
〉

, (13)

(u1 is the velocity component in x1-direction), while in spectral

space (13) becomes [4]

Suθ =
3

301/2

∫ ∞
0 k2Tθ (k,t)dk

[
∫ ∞

0 k2E (k,t)dk
]1/2 ∫ ∞

0 k2Eθ (k,t)dk
. (14)

Here, Tθ (k,t) is the scalar transfer and E (k,t) is the 3D kinetic

energy spectrum of the velocity. In view of the experimental

application of this analysis, it is convenient to express the trans-

fer in terms of the scalar spectrum, using the spectral dynamical

equation

∂

∂t
Eθ (k,t) = Tθ (k,t)−2νθk2Eθ (k,t) . (15)

Then, in order to assess the effect of the probe resolution on Suθ,

(14) has to be rewritten in terms of 1D spectra, i.e.

Suθ =
1
2

∫ ∞
0 k2

1
∂
∂t

Eθ1 (k,t)dk1 + 7
3 νθ

∫ ∞
0 k4

1Eθ1 (k1,t)dk1
[
∫ ∞

0 k2
1E11 (k1,t)dk1

]1/2∫ ∞
0 k2

1Eθ1 (k1,t)dk1

, (16)

where E11 is the 1D velocity spectrum. Finally, by considering

the true and measured values of (16), the attenuation factor for

the mixed skewness is defined as

RS (ℓ) =
S∗

uθ (ℓ)

Suθ
. (17)

An approximate estimate of the mixed skewness can be ob-

tained by neglecting the term ∂Eθ/∂t in (15), i.e.

Tθ (k,t)≃ 2νθk2Eθ (k,t) , (18)

since one expects that such term will contribute mainly in the

large scale range, especially at high Rλ; this approximation is

commonly applied in experiments. In the following, the mixed
skewness estimates that employ (18) are denoted by a prime.

Wyngaard [16] provided distributions of Rθ (ℓ) and Rε (ℓ) calcu-

lated via Pao’s model [11] of the scalar 3D spectrum. Here, we

reproduce similar results but using the scalar model spectrum of

Kraichnan [8]

Eθ(kηB)

θ2
BηB

= q(kηB)−1
(

1+(6q)1/2kηB

)

exp
(

−(6q)1/2kηB

)

,

(19)

with q = 2
√

5 [12]. Eq. (19), is normalised by Batchelor scales

ηB,θB(= ε
1/2

θ /γ1/2, with γ = ε1/2/ν1/2 the mean strain rate).

Finally, to calculate Suθ and S∗uθ, a model spectrum for the ve-

locity is needed. In this work, the expression

E(kη)

u2
Kη

= (kη)a
exp(−b(kη)) (20)

(uK = ν1/4ε1/4 is the Kolmogorov velocity) is considered, with

a = −5/3 and b = 5. Recent numerical simulations performed
at moderate Rλ [4, 9] have shown that the models (19)–(20) can

represent rather accurately the smallest turbulent scales.

Numerical Details

Homogeneous isotropic turbulence is simulated with a pseudo-

spectral code which solves the Navier–Stokes equation in a

periodic box. The transport-diffusion equation for a passive

scalar at Schmidt number Sc unity is also solved simultane-

ously. The computational domain is cubic, discretised by 2563

Fourier modes (more details about the numerical solution and

initial conditions can be found in [7]). After the scalar is intro-

duced, the velocity and scalar fields decay freely in time. The

data used in the following correspond to a Taylor-microscale

Reynolds number Rλ = σ
1/2
u1 λ/ν [σu1

is the variance of u1,

λ = (15νσu1
/ε)1/2 is the Taylor-microscale] of 42, while the

turbulent Péclet number Pe = σ
1/2
u1

λθ/νθ [λθ = (3νθσθ/εθ)
1/2

is the Corrsin microscale] is 20. Although these values of Rλ
and Pe are low, they are of the same order achieved in many

laboratory experiments with grid turbulence [5].

For the resolution analysis, it is crucial that the simulated fields

are fully resolved, down to the dissipative scale. This is verified,

here, in different manners. First, the values of kmaxη (and there-

fore kmaxηB, since Sc = 1) are ≥ 2, which ensures adequate

resolution of the small scales for the velocity and the scalar.

Also because of this constraint, the useful range of Rλ is lim-

ited to low values. Second, it is checked that the spectra of the

mean dissipation rate and of the second-order derivative vanish

at large wavenumbers (see next section). Third, the values of Su

and Suθ are verified to be near 0.5, as expected for well-resolved

fully developed turbulence [4]. The mixed skewness S′uθ calcu-

lated in spectral space is 0.55, or 10% larger than Suθ . This
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Figure 2: 3D spectra of the scalar variance, normalised by

Batchelor scales. —, present DNS data;−−, Kraichnan model.
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Figure 3: 3D spectra of the scalar dissipation rate, normalised
by Batchelor scales. —, present DNS data; ©, data from [14]

at Sc = 0.7, Rλ = 68.1;−−, Kraichnan model.

highlights the fact that, although the term ∂Eθ/∂t contributes

mostly in the energy containing range, at the present value of

Rλ it does affect the estimate of the mixed skewness.

Results

The scalar spectrum from the DNS is plotted in figure 2, nor-

malised by Batchelor scales. (Although, in the following, 1D

spectra are used to estimate the attenuation factors, 3D distri-

butions are reported initially, for comparison with data from

the literature.) Kraichnan model spectrum, also plotted, agrees

almost perfectly with the numerical data, at large wavenum-
bers. Scalar dissipation spectra are given in figure 3; here,

the ordinate is normalised so that the integral of the curves is

unity. The numerical distributions close at kηB ≃ 2, lending

confidence to the estimate of the dissipation rate. Further, the

present data agree satisfactorily with those of [14], computed

for only slightly different values of Sc and Rλ. Also the distri-

bution from the Kraichnan model follows accurately the numer-

ical data. Spectral distributions of the second-order derivative

are reported in figure 4. At large wavenumbers, near kηB ≃ 3,

the numerical data approach zero, hinting that the resolution

is adequate for computing the mixed skewness (recall that the

second-order derivative appears in the numerator of Suθ). The

Kraichnan model and, more especially, the data from [2] at sim-

ilar Rλ (also reproduced in figure 4) do not differ significantly.

The filtering effect of the probe is estimated via (2), using dif-

ferent averaging lengths ℓ, which are taken as multiples of the

numerical grid spacing. Correction factors for σθ and εθ as a

function of ℓ/ηB are given in figure 5. It is seen that εθ is at-

tenuated the most: for ℓ/ηB ≃ 10, the reduction is about 30%;
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Figure 4: 3D spectra of the scalar second-order derivative, nor-

malised by Batchelor scales. —, present DNS data; ©, data

from [2], Sc = 1, Rλ ≃ 40; −−, Kraichnan model.
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Figure 5: Attenuation factors for the scalar variance and mean

dissipation rate. Symbols are for present DNS data: ©, Rθ; �,

Rε. Dashed lines are for the Kraichnan model. The horizontal
scale on top is normalised by the Batchelor length scale η∗B as

affected by the lack of resolution.

in general, the attenuation on θ is nearly half that on ε. The

prediction for Rθ and Rε from the numerical data is close to that

from Kraichnan model, despite the fact that the latter does not

describe accurately the scalar spectrum at small kmaxηB. This

indicates that the large scales, which are more flow-dependent,

need not be reproduced closely by the model. Note that the con-

dition kmaxηB ≃ 1, (corresponding to ℓ/ηB ≃ π), often deemed

adequate in experiments to guarantee resolution of the small

scales, yields errors on εθ of nearly 10%.

Figure 6 shows the distributions of the mixed scalar attenuation.

In evaluating (16), the time derivative of the scalar spectrum has

been approximated by a finite difference. Unlike Rθ and Rε,

RS is > 1 and levels off near 1.15, for large ℓ/ηB. Therefore,

the mixed skewness is overestimated, when the measurements

are underresolved. Further, since RS is almost independent on

ℓ/ηB, checking that the value of Suθ is near 0.5 does not guaran-

tee that good resolution has been achieved. The reason for the

inappropriateness of Suθ as a test for the resolution is related to

its definition: the attenuation of the third-order moment in its

numerator is balanced by the attenuation of the scalar and ve-

locity derivatives in the denominator. This conclusion arguably

applies also to numerical simulations having poor spatial reso-

lution.

Figure 6 includes the mixed skewnesscalculated via the approx-

imation (18). The values of S′uθ are < 1, hence implying that the

mixed skewness is underestimated, when the resolution is poor.
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Figure 6: Attenuation factor for the mixed velocity-scalar
derivative skewness. Symbols are for present DNS data: ▽,

RS; ×, R′S. Dashed line is for the Kraichnan model.

A similar outcome is obtained when using (18) in combination

with the spectral models. It can be concluded that the neglect

of the ∂Eθ/∂t term in (15) entails unacceptable errors, when es-

timating the effect of the resolution on the mixed skewness at

small Rλ. However, it is expected that, as Rλ increases, such

approximation will be more fitting, because of the wider sepa-

ration between large and small length scales. In figures 5 and 6,

the second horizontal axis on top is normalised by the Batche-

lor length scale η∗B = R
−1/4
ε ηB as measured by a probe of size

ℓ/ηB, that is, taking into account the lack of resolution. This

makes the curves readily usable by experimentalists.

Conclusions

The effect of finite sensor resolution on the measurement

of scalar variance, scalar mean dissipation rate, and mixed

velocity-scalar derivative skewness has been estimated. A DNS

database for a passive scalar at Schmidt number unity, advected

by isotropic turbulence at low Taylor-microscale Reynolds

number, has been used for this purpose. Results for a sensor

length in the range 0 < ℓ/ηB < 15 show that the variance and,

more especially, the dissipation rate are underestimated, while

the mixed skewness is overestimated. This latter is also found

to be largely insensitive to the probe size, and therefore should

not be used to assess the adequacy of the resolution. Correction

factors derived from Kraichnan model spectrum are found to be

close to the values provided by the DNS.
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