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Abstract

We investigate the effect of the hot wire resolution on mea-

surements of the velocity derivative skewness in homogeneous

isotropic turbulence. A single wire configuration (with different

lengths and temporal sampling resolutions) is considered. Esti-

mates of the attenuation, based on numerical data in box turbu-

lence, are applied to experimental data taken in grid turbulence.

It is found that the sampling resolution has a sizeable attenua-

tion effect, while the length of the wire has a relatively minor

impact. The corrected experimental values support the conclu-

sion that the skewness is constant with the Reynolds number, in

agreement with Kolmogorov’s 41 theory.

Introduction

Homogeneous isotropic turbulence (HIT, hereafter) is char-

acterized by a negative skewness of the velocity derivative

∂ui/∂xi, where ui is the velocity fluctuation component along

xi. As is customary, the skewness is defined by

S≡ −

(

∂ui

∂xi

)3

[

(

∂ui

∂xi

)2
]3/2

(1)

(note the negative sign). In HIT, the skewness represents the

rate of production of vorticity through vortex stretching [12],

and the non-zero value arises from the non-linearity of the

Navier–Stokes equation. Given its significance, theoretical pre-

dictions of S and its dependence on the turbulence Reynolds

number Rλ(= λu′/ν, where u′ is the velocity fluctuation rms, λ
is the Taylor microscale, and ν is the kinematic viscosity), have

been extensively considered in the past. While Kolmogorov [8]

(K41) argued that S should be constant, others predicted that

it would either increase, based on intermittency arguments of

Kolmogorov [9] (K62), or decrease [6], as Rλ increases. In par-

ticular, George [6] suggested that the product SRλ should re-

main constant, as Rλ varies. The conflicting predictions arising

from K41 and K62 generated a large amount of research work

(see [18] for an account on different physical models relating
skewness and intermittency). Nevertheless, Nelkin [14] noted

that this issue remains unresolved. The behaviour of S has also

been investigated experimentally [5, 17, 13] and numerically

[11, 7, 1]; extensive collections of data for S in different flows

are given in [17, 18]; see also the review [15]. Note that, to date,

the values of S at the highest Rλ come from experiments.

Hot wires can provide accurate measurements of the skewness

with a resolution that can not yet be matched by other experi-

mental techniques. The spatial resolution of the probe might,

nevertheless, affect negatively the estimate of S. In fact, the

derivative of the velocity is dominated by the small scale mo-

tion (SSM), which is difficult to resolve accurately. Further, the

time sampling resolution of the velocity signal has also an im-

pact on the measurement of the SSM.

The loss of information due to averaging of the velocity fluctu-

ations over the probe size and to finite time sampling can how-

ever be restored with analytical arguments. One needs to as-

sume a functional form for the three-dimensional (3D) energy

spectrum, E , and consider the actual geometrical size and wire

arrangement of the probe. This approach, yielding corrections

in terms of the velocity spectrum, was described by [19]. Al-

though this method is probably the most common, there are also
alternative procedures to compensate for the resolution loss. For

example, Bremhorst [2] used the velocity correlation functions

and relaxed the isotropy condition, while retaining homogene-

ity, see also [21].

Although corrections for the velocity fluctuation rms [19, 21],

the mean energy dissipation rate [21], and the mean square vor-

ticity or enstrophy [20, 22] have been reported and discussed

in the literature (for a review see [22], mainly concerning the

probe spatial resolution), the effect of the temporal and spatial

resolutions of a probe for measuring S do not seem to have been

discussed previously.

Using direct numerical simulations of turbulence, it is now pos-

sible to evaluate the effects due to finite spatial and temporal res-

olutions of a hot wire employed in the experiments. The probe

is somewhat idealized in that its disturbance on the flow and the

response to the parallel velocity component are neglected. Sim-

ilar approaches were previously adopted in [16] and [21] for the

channel flow, with particular attention to the variance of the ve-

locity fluctuation and of its derivative (in a view to estimate the

mean energy dissipation rate). To date, there is no parallel anal-

ysis for isotropic turbulence. And yet, for this flow the balance

between kinetic energy decay and dissipation is exact, making

it particularly suitable as a test case. It is also meaningful to

assess the effect of resolution of hot wires for this fundamental

flow, since a large amount of data has been collected in grid tur-

bulence. In a recent paper [3], the effect of the sensor length of a

cold wire probe for scalar measurements in isotropic turbulence

was considered, by using direct numerical simulations (DNSs).

Results showed that for lengths up to 15 times the Batchelor
microscale, the mixed velocity-scalar derivative skewness was

overestimated of up to 15%, while the scalar variance and mean

dissipation rate were underestimated. Given the relevance of

the velocity derivative skewness and the widespread use of hot

wire anemometry for its measurement, in the present article we

quantify the effect that the spatial and temporal resolutions of a

single-wire (SW) have on the measurement of S.

Experimental and Numerical Details

Homogeneous isotropic turbulence is generated in a grid tunnel

of open-circuit type. Five grids, differing in the geometry of the

elements (including mesh size M, diameter of the elements de

and solidity σ) and construction, are used; four of them have
biplane elements, the fifth is a woven mesh (see table 1, for

geometrical details). These grids produce different initial con-

ditions and attain also different values of Rλ in the range 11,47.
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Figure 1: Comparison of 1D spectra measured by a single wire

at Rλ = 47 with grid sq35 (—), and calculated from the sim-

ulation at Rλ = 49 (−−). Inset: velocity derivative skewness

during the temporal decay from simulations.

The grids are inserted immediately downstream of a contraction

(area ratio of 9:1), and this is followed by the working section,

2.4 m long and of square cross-section (width 350 mm). Zero
pressure gradient in the test section is ensured by adjusting the

floor of the tunnel, and measurements are made along the tunnel

centreline — more details can be found in [10].

Symbol Name Grid type M de σ
(elem., constr.) (mm) (mm) –

▽−· sq35 square, biplane 24.76 4.76 0.35

�— rd35 round, biplane 24.76 4.76 0.35

♦ · · · rd35b round, biplane 24.76 4.76 0.35

©−− rd44 round, biplane 24.76 6.35 0.44

⊳ −− rw35 round, woven 4.25 0.825 0.35

Table 1: Main parameters for the grids.

The wires are operated by in-house constant temperature cir-

cuits at an overheat ratio of 1.5. Buck-and-gain conditioning is

applied to the velocity signals, before they are low-pass filtered

at a cut-off frequency fc; this varies depending on the grid and

measurement location. The cut-off frequency corresponds to

the onset of electronic noise and is roughly equal to fk ≡U1/η,

the Kolmogorov frequency. Sampling is implemented at a fre-

quency fs ≥ 2 fc, and a 16 bit A/D converter is used to digitize

the data. The single wire response is fitted to a third-order poly-

nomial. The mean dissipation rate ε is estimated from the decay

rate of the kinetic energy; the rms velocity is corrected for spa-

tial resolution, using the spectral correction method of [21]. The

value of ε is then used to obtain η, employed in the normalisa-

tion of the probe size. Taylor’s hypothesis, i.e. x1 = −U1t, is

used for the time-space conversion, assuming that the flow is lo-

cally homogeneous. In the experiment, the streamwise location

is denoted by xM, the distance from the grid location normalised

by the grid mesh size. In the following, a dagger denotes nor-

malisation by Kolmogorov scales.

For the experiment with the grid rw35 — where η is the smallest

— a single wire with dw = 1.26 µm and l ≃ 0.25 mm is used.
For all the other grids, the single wire has dw = 2.54 µm and

l ≃ 0.5 mm, see table 1. All wires are etched from Wollaston

(Pt-10% Rh).

Temporally-decaying isotropic turbulence is simulated in a pe-

riodic box of 2563 nodes, by solving the Boltzmann equation on

a lattice, see [4]. Computations are performed in double preci-

sion on a cluster of PCs located at the University of Newcastle,

Figure 2: Schematic of the velocity averaging using three nodes

of the computed field, to represent one wire.

where the wind tunnel is also situated.

Experimental and numerical spectra, compared in figure 1, are

nearly identical. The temporal profile of S, inset of figure 1,

starts from zero at the beginning of the simulations, reflecting

the provisional and unphysical velocity field, but quickly settles

around 0.5. It was verified that the estimates of the skewness

from the three velocity components are identical, within statis-

tical fluctuations. The velocity field used in the following cor-

responds to t = 8.5, when the turbulence is fully developed, and

the maximum resolved wavenumber (normalised by η) is 3.28,

at Rλ = 21.

Results

The resolution effects of the SW are estimated from the numer-

ical data by considering the virtual probe oriented like in figure

2. Values of the velocity, taken at a set of nodes which corre-

spond to the shape of the SW are combined in physical space to

provide a filtered velocity field. The effect of line averaging on

u1 is given by

u′1 (x1,x2,x3) =
1

n+1
∑

i=0,n

u1 (x1,x2 + iδx2,x3) , (2)

where nδx2 represents the length of the wire l, δx2 being the

numerical mesh increment (equal in the three directions). The

effect of reduced spatial sampling on the spatial derivative

∂u′1/∂x1 is given by the finite difference (equivalent to a zero-

order hold sampling)

u′1 (x1 + jδx1,x2,x3)−u′1 (x1,x2,x3)

jδx1
, (3)

where jδx1 ( j positive integer) represents the spatial increment

m.

The attenuation effect on S of the virtual SW, estimated from the

numerical data via (2) and (3), is given in figure 3. The curves

are normalised by the skewness calculated using the fully re-

solved field. The effect of the undersampling in the x1-direction

is dominant over the effect of line averaging. Note that this

latter leads, for very small values of m†, to a tiny overestima-

tion of the skewness. This effect is displayed also by the mixed

velocity-scalar derivative skewness [3].

Figure 4 shows the distributions of l† and m† during the grid tur-

bulence decay, for all the measurements performed. Although
the size of the probes is fixed, η increases in the streamwise

direction, hence the decreasing trends. Also, in the experiment

the sampling frequency is reduced in a stepwise manner, while

the probe is traversed in the streamwise direction. This explains

the saw-tooth profile of m†. With the present values of l† and
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Figure 3: Effect of undersampling and wire length on Ss from

simulations: —©, l† = 0; —△, l† = 1.92; —�, l† = 3.83.
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Figure 4: Profiles of the normalised size (l†) and sampling rate

(m†) for the SW, during the grid turbulence decay. —, rd35;

−−, rd44;−·, sq35; · · ·, rd35b; ⊳ −−, rw35.
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Figure 5: Correction factors for the SW probe used in the ex-

periment, as estimated from simulations. —, rd35; −−, rd44;

−·, sq35; · · ·, rd35b; ⊳ −−, rw35.
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Figure 6: Uncorrected values of the skewness measured with

the SW. —, rd35;−−, rd44;−·, sq35; · · ·, rd35b; ⊳−−, rw35.

The horizontal dashed lines are at±5% of the ensemble average

(≃ 0.5) of the corrected values, see figure 7.
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Figure 7: Corrected values of the skewness measured with the

SW. —, rd35; −−, rd44; −·, sq35; · · ·, rd35b; ⊳ −−, rw35.
The horizontal dashed lines are at±5% of the ensemble average

(≃ 0.5).

m†, and using the numerical results of figure 3, the attenuation

of S caused by the resolution of the real SW can be estimated.

Figure 5 shows that the attenuation amounts to around 5% for

all cases except rw35, for which it lies between 10% and 15%.

The measured values of S during the decay are given in figure 6.

Note the relatively large scatter between the data obtained from

different grids. By applying the correction factors of figure 5 to

the measured values of Ss in figure 6, the skewness values are

corrected for the attenuation of the probe. The new values, fig-

ure 7, are around 0.5 (±5%) for nearly all points and all cases.

Figure 8 shows the product of the skewness measured by the

SW (and corrected for the resolution) and the Taylor microscale

Reynolds number. The product SsRλ decreases slightly in the

streamwise direction. This reduction is clearly an effect of the

decay of Rλ, since Ss is nearly constant within this interval, as
seen in figure 7.

Conclusions

We estimated the effect of resolution for a single wire on the

measurement of the velocity derivative skewness. The turbu-

lent flow considered is homogeneousand isotropic. The present

conclusions are based on data from numerical simulations in

box turbulence and experiments in grid turbulence (both at low

Rλ). Results show that for this probe, the effect of the spatial
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Figure 8: Profile of the product SsRλ during the grid turbulence

decay, using the SW data corrected for resolution. —, rd35;

−−, rd44;−·, sq35; · · ·, rd35b.

undersampling is more important than line averaging. Further,

while increasing m attenuates S, for small values of m, the effect

of l yields an overestimation of S.

Since the corrected experimental values of the skewness from

the single hot wire are constant with respect to xM, the product

SRλ decreases slightly with xM, reflecting the slight decrease

in Rλ. This is at variance with a recent similarity proposal [6]

implying that SRλ should remain constant during the decay.
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