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Abstract

The purpose of the current work is to develop a solution method
for incompressible Navier-Stokes equations both for velocity
and temperature fields based on artificial compressibility
concept. The equations are discretized in Finite-Volume
formulation, convective fluxes are calculated using a high-order
characteristic-based Roe-like flux splitting. For time-marching
Sth-order Runge-Kuta algorithm, because of its wide range of
stability, is used. The formulation can be used both for steady
and unsteady flows. The results for three different flux
treatments are presented. The method validation is performed by
solving velocity and temperature fields over a ribbed surface and
comparing them by experimental data, in which a reasonable
agreement would exist. The convergence rate of the method
shows a sensible reduction in iteration steps. The influence of
semi-hexagonal riblet on local Nusselt number is addressed.

Keywords: Artificial Compressibility Method, Characteristic
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Introduction

In the past decade, much progress has been made in developing
computational techniques for predicting flow and heat transfer
fields. The accuracy and efficiency of these methods can be
affected by factors such as flux treatment, boundary conditions
and the grid type. Many existing methods have been developed
to solve the compressible flow equations within transonic Mach
numbers. However, a lot of applied problems, such as those in
cooling electronic components are inherently incompressible and
must be treated appropriately. With the progress in recent years
of the compressible flow schemes, these have naturally been
considered for use with incompressible flows simply by lowering
the Mach number to minimize compressibility effects.
Unfortunately, as Mach number is successively decreased toward
incompressible limit, the performance of compressible methods
in terms of both convergence rate and accuracy suffers greatly.
Volpe [15] demonstrated the poor performance of compressible
flow solvers under these conditions, particularly for Mach
numbers below approximately 0.1.

To overcome the difficulties associated with the use of
compressible methods, excellent progress has been made in
applying artificial compressibility method (ACM) to
incompressible flows. ACM is a way of extending a
compressible flow solver to use at zero Mach numbers, which
first introduced by Chorin [2]. The method has been successfully
used both for steady and unsteady flows.

Tai et al. [14], have developed a Navier-Stokes solver for
velocity field which is based on the artificial compressibility
method and in finite-volume discretization. Rogers et al. [13]
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applied the ACM to unsteady problems with an implicit line-
relaxation procedure using finite-difference discretization.

Some researchers have applied ACM in conjunction with
different upwind differencing schemes and solution techniques to
solve steady-state as well as unsteady incompressible problems.
The upwind differencing schemes that have been used include
the flux-difference splitting [12], MUSCL [1], TVD [4], and
WENO [16], schemes. Kao et al. [7] have used a segregated
finite-difference scheme based on ACM to solve velocity field of
shear-driven cavity.

As Madsen [9] and McClimans [10] have claimed, the time
marching approach used in this work can predict both steady and
unsteady flows but this work will focus on steady condition.
Riblets with various geometries find the growing application as
heat transfer promoters and also vortex generators. Most of the
works in treating two-dimensional riblets devote to the square
shapes not for semi-hexagonal riblets which has been treated
here.

The purpose of the current work is to develop a solution method
for incompressible Navier-Stokes equations both for velocity and
temperature fields on the basis of ACM concept in Finite-Volume
discretization. In this paper a new second-order algorithm is
proposed for advective flux calculation of incompressible flow.
Convective fluxes are modeled using a high-order characteristic-
based Roe-like flux splitting approach. For time-marching a Sth
order Runge-Kuta, because of its wide range of stability is used.
The method validation is performed by solving velocity and
temperature fields over a ribbed surface and comparing them by
experimental data. The influence of riblet on local Nusselt
number is discussed. To the authors knowledge, there is no work
in literature which uses exactly the numerical procedure used in
the current geometry, to solve velocity and temperature fields
simultaneously. Most of the works performed on the ribbed
surfaces were experimental and usually not in semi-hexagonal
geometry [8]. The numerical works have used other procedures
and usually were limited to only velocity field [5].

Governing equations

The primitive form of the incompressible Navier-Stokes
equations in Finite-volume form with artificial compressibility
reads
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Equation 1, has been non-dimensionalized by the following
reference values,
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Convective Flux Treatment

At the present time various flux treatments are in use. The
averaging method is widely employed in the literature. Here a
characteristic-based Roe-like approach is developed to compute
convective fluxes at the cell boundaries. By the aid of ACM, the
governing equations took a hyperbolic dominated nature,
therefore the application of characteristic based wave propagation
models would become possible. Roe method has been originally
developed to estimate the fluxes of Euler equations [11] but in
current work a similar approach is applied to the artificial
compressible system of Navier-Stokes equations. In this method
fluxes at cell boundary are written as:

Flux = %(NFR + NFL)—%\A\(UR -U,) Q)

Where, NF is the flux vector normal to the grid boundaries, U X
and U, are the values of variables at the right and left side of
cell boundaries and

|4 = RIA|L ®)

Where A is a diagonal matrix, whose elements are the eigen-
values of flux jacobian matrix A, and are given by

A=N+c
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Where
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R and [ are right and left eigenvectors of matrix A

respectively. These matrices for the primitive variables, in the
presence of artificial compressibility factor has been derived as
follows,
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Where @ is the shear velocity,
p=nyv-nu an

These results lead to the following ‘ A‘ matrix,
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All the components are calculated using an average of variables
in different sides of cell boundary, which reads,

_Ux+U, (14)
2

U

The order of accuracy of the scheme depends on choosing U,
and U, values. Assigning cell-center values leads to a first order

accuracy, Equation 15, but using a kind of interpolation [3] will
result in second order of accuracy, Equation 16,

First-order

UL,i+1/2 =U,, UR,i+1/2 =U., (15)



Second-order
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Since the velocity field is assumed to have constant fluid
properties such as viscosity coefficient and density, so velocity
field in this case is independent of temperature field. By this
assumption, the fluxes related to the velocity field will be treated
separately by the use of formulation given in Equation 4. The
fluxes of temperature field are computed using an interpolation
dependent on the order of accuracy desired. In other words the
fluxes related to velocity and temperature fields are treated in two
different ways. This kind of treatment has shown better
efficiency, at least in current observations.

Viscous Fluxes

The viscous fluxes discretization is straightforward and uses a
kind of 2nd-order averaging. The right hand-side of Equation 1 in
discretized form becomes,

RHS of Eq. 1 4 i(RiAyi - S,‘Axi) n

i=1
In the calculation of R, and §,, secondary cells are employed.

Time Discretization Procedure

For marching in time the well known 5th-order Runge-Kuta
algorithm of Jameson [6] is utilized. This allows to handle the
proposed scheme at higher CFL numbers. The solution is updated
at consecutive time steps as shown in Equation 18.
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The S5th order Runge-Kuta algorithm has stability margin of
CFL= 4 for the linear advective equation. Stability requirement
impose a restriction on the time-marching steps [5], to have a
stable solution time-marching steps should satisfy the following
conditions,

Ar o CFLXAL,, (20)
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Boundary Conditions

Consistent boundary treatment ensures the disturbance

dissipation in discretized domain without reflection. At the solid
boundary a condition of zero mass and energy flux through the
surface is prescribed by setting the fluxes corresponding to these
faces equal to zero. Pressure on the solid surface is found by
solving normal momentum equation and temperature on the solid
surface is assumed to be constant. This technique only permits a
flux of the pressure terms of momentum equation through a solid
boundary. At the inlet boundary pressure is extrapolated from
interior domain, velocity and temperature is set equal to the free-
stream values. Both velocity and temperature fields are
considered to be developing. At the outlet boundary the pressure
is fixed and the remaining variables are interpolated from interior
domain.

Grid Features

To have a smooth grid an elliptic method has been applied. Grids
have been clustered in regions with large gradients of variables to
improve the efficiency as shown in Figure 1. The developed
methods had been applied to different grid resolutions such as
80*30, 100*40, 120*40 and 160*60 to ensure grid independency
of results. Grid independency has been achieved in 120*40
resolution as shown in figure 2. All the results reported in the
present work are based on 120*40 grid size.
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Figure 1. A part of grid generated for semi-hexagonal riblet
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Figure 2. Grid independency by comparing Nusselt number



Numerical Results

Validation of the method was attained by performing calculations
for the case of flow with one rectangular riblet attached to the
lower wall with constant heat flux, for which the numerical
results exist in the literature. Figure 3, compares the results of
present work with those of Ref [17] for local Nusselt number. A
quite good agreement is observed between the two solutions.

All the numerical results demonstrated, have been obtained from
a solver written by the authors. This solver is equipped by three
flux calculation models, namely Jameson flux averaging, first
and second-order developed methods. ACM was successfully
applied in proceeding methods. Several numerical tests were
conducted in different Reynolds numbers and for various
geometries. The results for semi-hexagonal case are presented
here because there was little data about this shape of riblet in
literature.
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Figure 3. Comparing results of present results with those of Ref [17]

For design purposes Nusselt number is an important factor so
local Nusselt numbers are represented for different Reynolds
numbers and also for three different method of calculating
convective fluxes, in Figure 4. As can be seen, at the leading
edge of the surface the flow is developing so local Nusselt
number is high until it reaches forward stagnation point of the
riblet, where the Nusselt number decreases. At the first vertex of
riblet because of high mixing effect Nuselt number rises. Another
extremum can be seen at the second vertex of riblet. Behind the
riblet again because of the stagnation effect Nusselt number
decreases.

To have a better understanding of the Nusselt number behavior
and also showing the ability of the developed method in
modeling the velocity field, velocity vectors and stream lines for
second-order method in Re=100 are presented in Figures 5-6. As
can be observed in region behind the riblet the vorticity region is
clearly noticeable.
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Figure 4.a. Local Nusselt Number for the three methods in Re=30,
Pr=0.71, CFL=0.6
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Figure 4.b. Local Nusselt Number for the three methods in Re=100,
Pr=0.71, CFL=0.6

28
26
24
22
20
18
16
14
12
10

JfErneson
Curmrent wvaork 1=st-od
current work 2nd-od

3

(=

Figure 4.c. Local Nusselt Number for the three methods in Re=200,
Pr=0.71, CFL=0.6
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Figure 5. Velocity Vectors behind the Riblet, Re=100, CFL=0.6
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Figure 6. Streamlines behind the Semi-hexagonal riblet, Re=100,
CFL=0.6
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Figure 7. Comparison between Jamesons Flux averaging and present
2nd-order methods convergence rates, Re=200, CFL=0.6

One of the most important properties of a method is its
convergence rate. According to figure 7, the proposed method
has a much better convergence rate. For example to reach an
error of e-5, 480 iterations in averaging method and 280
iterations in the proposed method, is required

Concluding Remarks

A Roe-like Characteristic based, high order method was
developed to solve velocity and temperature fields
simultaneously in a new geometry. The enhanced method was
quite successful in predicting both the velocity and temperature
fields over a semi-hexagonal riblet in different Reynolds
numbers. The convergence rate of the method is reported in
Figure 7, In which the proposed second-order Roe-like method
demonstrates a better convergence rate. This was partly due to
the second-order upwind flux treatment and also employing the
fifth-order Runge-Kuta algorithm. This kind of flux treatment
relates the physical flow behaviour to the mathematics in a
genuinely approach. The flux treatment considers the virtual
acoustic wave propagation in the computational domain. This is
made possible, by reconstruction of fluxes and their
corresponding eigenvectors. By the aid of ACM the governing
equations took a hyperbolic dominated nature, therefore the
application of characteristic based wave propagation models
would become possible.
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Nomenclauture

A dimensionless flux jacobian matrix
CFL | Courant number
F.G dimensionless flux vector components
L dimensionless Left eigen vector
N dimensionless normal velocity
NF dimensionless normal flux
Nu Nusselt number
n.n, grids normal vector components
P dimensionless pressure
ﬁ pressure, Pa
Pr Prandtl number
R,S dimensionless viscous flux components
R dimensionless right eigen vector
Re Reynolds number
t dimensionless time
¢ time, s
T temperature, k
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U,V | dimensionless velocity components
12, v velocity components, m/s
X,y dimensionless coordinates
X , j/ physical coordinates
o thermal diffusivity, m? / s
ﬂ artificial compressibility, dimensionless
1) dimensionless temperature
P kg/ m’ density,
A eigen values
A matrix of eigen values
@ shear velocity
14 m? [s kinematic viscosity,
Q dimensionless cell area
subscripts
Q0 free stream values
w wall
R right
L left




