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Abstract 

Direct numerical simulations have been made of the turbulent 
boundary layer developed in axial flow over long cylinders. In 
the frequency spectra of surface-pressure fluctuations on the 
cylinders, characteristic frequency ranges, which are the 
counterparts of similar ranges in flat-plate flow, have been 
identified. Forms of similarity scaling in these ranges have been 
determined. They are considerably more complicated than the 
flat-plate scaling, with length and time scales additionally 
dependent on curvature parameters, but are consistent with 
existing numerical simulations of and experimental data for 
cylinder flows.  

At the low cylinder Reynolds numbers considered, the rms 
surface-pressure in terms of the mean wall shear stress is found to 
be smaller than in flat-plate flow; it increases towards flat-plate 
values as the cylinder Reynolds number increases, in accord with 
experiment.  

Introduction 

Properties of the axisymmetric turbulent boundary layer that 
develops on a very long cylinder with its axis aligned with the 
direction of a uniform flow of fluid have been determined by 
direct numerical simulation. Details of the numerical method are 
given by Woods and Bull [8]. The procedure is similar to that 
used by Neves, Moin and Moser [5], with the exception that the 
boundary conditions at the cylinder surface and at the outer edge 
of the boundary layer have been set in terms of vorticity rather 
than velocity.  

Here, attention is concentrated on the pressure fluctuations 
generated at the cylinder surface. The cylinder radius is denoted 
by a, the fluid kinematic viscosity by ν, the free-stream velocity 
by U1, and the boundary layer thickness by δ . Flows with 
cylinder Reynolds numbers of Rea = U1a/ν = 311, 492, 674 and 
1300 and various values of the ratio δ /a have been considered. 
Two of the Reynolds number values, 311 and 674 are the same as 
those used in [5].  At Rea = 311, calculations have been made for 
a systematic variation of δ /a over the range 4.0 ≤ δ /a ≤ 28.3. So 
far in the present work, direct calculations of frequency spectra 
and convection velocities have not been made. The frequency 
spectra presented have been obtained from calculated 
wavenumber spectra by application of Taylor’s hypothesis, 
whereby the wavenumber k is replaced by ω /Uc, the radian 
frequency ω  divided by the convection velocity Uc. The 
convection velocity has been taken as the value obtained by 
Neves et al. [5], namely Uc = 0.65U1. The flow conditions 
considered are shown in Table 1. 

Of direct interest is the effect of curvature on the frequency 
spectrum and the mean square pressure, as compared with the 
much more extensively investigated case of flow over a flat plate. 

Analysis of experimental investigations of surface-pressure 
fluctuations generated by the turbulent boundary layer on a flat 
plate (for example, Farabee and Casarella [3], Bull [2]) have 
shown that the power spectral density of the pressure φ  scales in 
different ways in different frequency ranges. The following four 
frequency ranges and their associated forms of spectral scaling 
can be identified: 

1. Low-frequency range: ωδ */U1 ≤ 0.03, 
φU1/q

2δ *  = k1 (ωδ */U1)
2; 

2. Mid-frequency range: 5 ≤ ωδ /Uτ  ≤ 100, 
φUτ /τw

2δ  = f2 (ωδ /Uτ); 

3. Universal range: 100 ≤ ωδ /Uτ  ≤ 0.3δ+, 
ωφ /τw

2 = k3; 

4. High-frequency range: ω+ = ων/Uτ
2 ≥ 0.3, 

φ+  = φUτ
2/τw

2ν  = f4 (ων/Uτ
2); 

where δ * is the displacement thickness of the boundary layer, τw 
the wall shear stress, Uτ = √τw /ρ, ρ is the fluid density, q = 
(1/2)ρU1

2, δ+ = δUτ /ν, k1 and k3 are constants, and f2 and f4 
represent functions. These scalings and frequency ranges make 
an obvious point of reference for the examination of similar 
results for axisymmetric boundary layers. 

Low-frequency Range 

The present cylinder calculations are based on periodic boundary 
conditions in the streamwise direction, with a periodic 
streamwise length in all cases of 66πa. This limits the lowest 
attainable wavenumber to k = 1/33a and the lowest attainable 
value of both kδ and ωδ /Uc to (δ /a)/33. The minimum possible 
value of ωδ */U1 (for δ /a ≈ 4, δ /δ* ≈ 6, Uc /U1 = 0.65) is therefore 
about 0.013. For larger values of δ /a, the parameter ωδ */U1 

exceeds the upper limit (0.03) of the flat-plate low-frequency 
range. Consequently comparison of axisymmetric-flow similarity 
and flat-plate similarity in this frequency range cannot usefully 
be made. 

Rea/ 
Ref. 

δ/a  δ + Symbol Rea/ 
Ref. 

δ/a  δ + Symbol 

311 3.95 88.3  [5] 5 214  
311 7.25 160  [5] 11 239  
311 14.8 310  [3] 0 1169  
311 28.3 573  [3] 0 2010  
492 7.85 247  [6] 0 556  
674 3.66 157  [1] 3.2 563  
674 8.09 330  [1] 6.6 1101  
1300 3.63 270  [1] 11.5 1829  
[4] 0 590  [7] 5.04 892  

Table 1. Flow parameters and symbols used for figures. 



 

Medium-frequency Range 

When plotted in the flat-plate medium-frequency-range (MFR) 
form, φUτ /τw

2δ as a function of ωδ /Uτ (figure 1), the calculated 
data do not exhibit similarity.  

Since it is to be expected that the greatest contributions to the 
wall pressure come from the regions closest to the wall, 
contributions from the outer part of the boundary layer can be 
expected to become less and less significant as δ /a increases.  
This suggests that the boundary layer thickness itself is unlikely 
to be the most appropriate length scale for this frequency range. 
In fact, the data collapse quite well when the radius of curvature, 
the cylinder radius, is used as the length scale instead of the 
boundary layer thickness. However, in the limiting case of very 
small δ /a, when the cylinder becomes effectively a flat plate with 
a = ∞, the radius of curvature ceases to be a useful length scale 
and must be replaced by the boundary-layer thickness.  A 
possible composite length scale L that meets the limiting 
requirements at the extremes of very large and very small δ /a can 
be defined as 

 L = δ / [1 + (δ /na)] = Fa ,    (1) 

where 

F =   (δ /a) / [1 + (δ /na)] ,          (2) 

and n is a constant factor, an appropriate value of which is a low 
integer. A similar factor has been used by Neves et al. [5], 
although in their case to increase the length scale to a value larger 
than δ  rather than to decrease it as in the present case. Equation 
(1) has the property that L → na as δ /a → ∞ and L → δ  as δ /a → 

0. Similarity of the results of the present calculations is not very 
sensitive to the value of n: it is quite close for values of n from 
about 1 to 4. A value of n = 4 has been chosen as this seems to 
give the most satisfactory agreement with flat-plate data. For δ /a 
as low as 4, L = 2a = δ /2, L is still heavily biased towards the 
cylinder radius.  

The data in the modified form φUτ /τw
2L = φUτ (1 + δ /4a)/τw

2δ as 
a function of ωL/Uτ = ωδ /(1 + δ /4a)Uτ are shown in figure 2. In 
this form there is similarity, with φUτ /τw

2L constant over the 
lower part of the frequency range. The calculations indicate that 
the constancy persists at least down to a frequency corresponding 
to ωL/Uτ ≈ 0.2, while the upper limit is Reynolds-number 
dependent and given approximately by ωL/Uτ = 0.2L+ (where L+ 
= LUτ /ν). The range can therefore be tentatively taken as 0.2 ≤ 
ωL/Uτ ≤ 0.2L+. This contrasts with the approximate constancy of 
φUτ /τw

2δ over the flat-plate mid-frequency range of 5 ≤ ωδ /Uτ ≤ 
100. Other cylinder data — the results of the numerical 
simulations of Neves et al. [5] and the experimental results of 
Snarski and Lueptow [7] and Berera [1] — are consistent with 
this, as figure 2 indicates. The Reynolds-number dependency of 
the upper limit of this frequency range is a reflection of the fact 
that at these low Reynolds numbers the overall rms pressure 
fluctuation is strongly dependent on the cylinder Reynolds 
number. 

High-frequency Range 

At a given value of the cylinder Reynolds number (Rea), spectral 
plots (figure 3) in the flat-plate high-frequency (HFR) form, φ+ = 
φUτ

2/τw
2ν as a function of ω+ = ων/Uτ

2, show close similarity that 
is almost independent of the value of δ /a. For all the Reynolds 
numbers considered, the similarity occurs for ω+ greater than 
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Figure 1. Pressure spectra of present simulations in flat-plate mid-
frequency-range form. Symbols are defined in table 1.  
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Figure 2. Pressure spectra in modified mid-frequency form, with 
]4/1/[ aL δδ += (see equation 1).  Symbols are defined in table 1. 

 
 



 

0.2–0.3, a value very similar to that for high-frequency similarity 
in the flat-plate case.  However, the similarity curve is not the 
same at all Reynolds numbers, the spectral levels increasing with 
Rea (or a+ = aUτ /ν or L+), a further reflection of the fact that at 
these low Reynolds numbers p′/τw is quite strongly dependent on 
Rea. Nevertheless, the curves do have similar forms, and those for 
the various Reynolds numbers can be brought together if the data 
are plotted in the form of G2φ+ against Gω+ (figure 4), where G 
is primarily a function of a+ (although also expressible in terms 
of F and L+); G can be represented empirically as 

G = (1 +120/a+)1/2       

     = (1 + 120F/L+)1/2 .        (3)                                                 

As a+ and L+ increase, the function G approaches unity, so that 
for large values of these parameters the standard flat-plate 
spectral form of φ+ as a function of ω+ is recovered. 

Universal Frequency Range 

The flat-plate universal range represents an overlap of the mid-
frequency and high-frequency ranges. Such an overlap implies 
that, in this range, the spectral density is independent of any 
frequency scale, which in turn implies that φ ∝ ω -1 or ωφ = 
constant. For the present cylinder data, the character of the 
variation of the spectral density with increasing frequency — a 
transition from a constant value to a rapidly falling value — 
inevitably means that over some part of the frequency range the 
spectral density will vary inversely as the frequency. The 
frequency range over which this form of variation occurs is in 
fact very small, and there is certainly no extended region of 
overlap as found in high-Reynolds-number measurements on flat 

plates. For the low Reynolds numbers under consideration, the 
upper limit of the mid-frequency range and the lower limit of the 
high-frequency range can therefore be taken to be coincident. 
The high-frequency range can then be defined by Gω+ ≥ 0.2G, 
that is ω+ ≥ 0.2.  

Mean-square Pressure 

Calculated and experimental values of the rms wall-pressure 
fluctuation p′, expressed in the form of p′/τw (where τw is the 
mean shear stress at the cylinder surface), are shown in figure 5 
as a function of L+. An empirical expression for p′/τw can be 
obtained from the values of the non-dimensional spectral levels 
in the frequency ranges that have been identified and the 
corresponding non-dimensional extents of those ranges. Thus, the 
contribution of the "mid"-frequency range (where φUτ /τw

2L = 
constant = 0.020) to the mean square pressure is 

 ( 22 / wp τ )MFR = (0.020) (0.2L+) = 0.0040L+.   (4) 

(This assumes that the constant value of φUτ /τw
2L also extends 

over the frequency range 0 ≤ ωL/Uτ ≤ 0.2, but the contribution 
from this range will generally be insignificant). 

With the extent of any overlap region assumed to be negligible, 
the contribution of the high-frequency range to the mean square 
pressure is  

( 22 / wp τ )HFR = �
∞

++

G

GdGG

2.0

23 )()()/1( ωφ .   (5) 
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Figure 3. Pressure spectra of present simulations in flat-plate high-
frequency-range form. Symbols are defined in table 1. 

 

10
−2

10
−1

10
0

10
1

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Gω+

G
2 φ+

Figure 4. Pressure spectra in modified high-frequency form, with G given 
by equation 3.  Symbols are defined in table 1. 

 



 

Evaluation of the integral leads to the result 

( 22 / wp τ )HFR = 5.75/G3 – 1.60/G2 .   (6)  

The total mean square pressure is then given by 

p′/τw = [( 22 / wp τ )MFR  +  ( 22 / wp τ )HFR]1/2    

 = [0.0040L+ + 5.75/G3 – 1.60/G2 ]1/2.    (7)  

This relation is compared with the available low-Reynolds-
number experimental and numerical data for cylinders in figure 
5. Its form implies a weak dependence on δ /a, as the curves for 
δ /a = 4 and 30 (the approximate range of this parameter for the 
data considered) shown in the figure illustrate. In the limiting 
case of the flat plate, the scale L becomes the boundary layer 
thickness, and L+ = δ+. The figure therefore also shows the form 
of the dependence on δ+ of the rms pressure for flat plates at high 
Reynolds numbers as determined by Farabee and Casarella [3], 
namely  

p′/τw  = [6.5 + 1.86 ln (δ+/333)]1/2.   (8) 

Conclusions 

Direct numerical simulations of the pressure fluctuations on the 
surface of a cylinder in axial flow show that the pressure spectra 
exhibit characteristic frequency ranges that are the counterparts 
of the frequency ranges previously identified for flow over flat 
plates. The cylinder ranges, however, show considerably more 
complicated similarity scaling relations than the flat-plate ranges, 

as a result of the effects of curvature on the flow. These effects 
introduce a dependence on δ /a and a+ in addition to the 
parameters governing flat-plate flow.  Empirical forms for the 
spectral scaling have been obtained from the numerical 
simulations. These are consistent with available experimental 
data for cylinders in axial flow, and asymptotically approach the 
flat-plate relations as the radius of the cylinder increases. In 
particular, it is found that, for the low Reynolds numbers 
considered, the counterparts of the mid-frequency and high-
frequency flat-plate ranges are: 

Mid-frequency range: 0.2 ≤ ωL/Uτ ≤ 0.2L+, 
φUτ /τw

2L = f2 (ωL/Uτ); 

High-frequency range: ω+ ≥ 0.2, 
G2φ+ = f4 (Gω+) . 

There appears to be no significant universal range in a region of 
overlap of the mid-frequency and high-frequency ranges. 

At low cylinder Reynolds numbers Rea, the ratio of mean-square 
surface-pressure to wall shear stress p′/τw is found to be 
considerably smaller than the values typical of flat plates, but to 
increase towards flat-plate values with increasing Rea, a

+, and the 
scale L+.  
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Figure 5. Root-mean-square pressure normalised by mean wall shear 
stress as a function of length scale L+. Equation (7): – – – δ /a=4; 

—— δ /a=30. Equation (8): - - - - (L+=δ +). Simulations:   present study; 
  [5]. Experiments:   [1];   [7]. 
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