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Abstract

The three-dimensional structure of the thermal boundary layer
adjacent to an evenly heated vertical wall with imposed sta-
ble background density stratification is investigated using di-
rect numerical simulation. The wall is considered to extend in-
finitely in the vertical and spanwise directions, with the heat-
ing imposed as a constant flux boundary condition. Flow be-
haviour is determined by a Reynolds number based on the ra-
tio of the boundary flux gradient to the background gradient.
For low Reynolds numbers the flow is stable with variation in
the wall normal direction only. For Reynolds numbers greater
than a critical value the flow is unstable and supports a two-
dimensional wave travelling vertically up the plate, in the direc-
tion of fluid flow. A further increase in Reynolds number sees
the generation of a three-dimensional spanwise structure on the
two-dimensional travelling wave.

Introduction

Flows generated by the transfer of heat from a vertical wall to
an adjacent fluid are known as natural convection flows and oc-
cur widely in nature and engineering. The rate of heat trans-
fer is strongly dependent on the character of the flow, that is
whether it is laminar or turbulent, with turbulent natural con-
vection boundary layer flows having heat transfer rates several
times that of a laminar natural convection boundary layer. The
transition from laminar to turbulent flow is believed to occur
via the generation of rapidly growing three-dimensional waves
associated with an initial two-dimensional transition, although
the mechanism is not fully understood. In this paper the onset of
three-dimensional travelling waves is investigated for the case
of an infinite plate having a uniform heat flux, subjected to a
stable linear background temperature stratification. For a con-
stant Prandtl number the behaviour of this flow is determined
by the ratio of the horizontal temperature gradient imposed at
the plate, and the background stable vertical temperature gra-
dient. Below a critical value of this control parameter the flow
is steady, one-dimensional and independent of the control pa-
rameter. Above a critical value the flow is two-dimensional
and oscillatory, exhibiting waves travelling in the vertical di-
rection. A further increase in the control parameter leads to
a spanwise, three-dimensional, structure super-imposed on the
two-dimensional travelling waves.

The governing equations for this flow are the three-dimensional
Navier–Stokes equations with the Oberbeck–Boussinesq ap-
proximation for buoyancy, together with a temperature transport
equation,

ut +uux + vuy +wuz = −px +ν(uxx +uyy +uzz), (1)

vt +uvx + vvy +wvz = −py +ν(vxx + vyy + vzz)+gβT, (2)

wt +uwx + vwy +wwz = −pz +ν(wxx +wyy +wzz), (3)

ux + vy +wz = 0, (4)

Tt +uTx + vTy +wTz + vΓs = α(Txx +Tyy +Tzz), (5)

where u, v and w are the velocity components in the directions
x, y and z respectively, with x the horizontal direction, y the ver-
tical and z the spanwise, t is the time, p the pressure, β, α and
ν are the coefficients of thermal expansion, thermal diffusivity
and kinematic viscosity respectively and g is the acceleration
due to gravity. The temperature is represented as the sum of
a background temperature T and a perturbation temperature T .
The background temperature is assumed to be x and z indepen-
dent and linear with T y = Γs a positive constant. The domain is
−∞ < y < ∞,−∞ < z < ∞,0≤ x < ∞, with boundary conditions,

u = v = w = 0, Tx = −Γw on x = 0, (6)
u,v,w,T → 0 as x → ∞. (7)

A one-dimensional steady analytic solution may be found for
this flow. Under the assumption that v = V (x) and T = Θ(x),
the governing equations reduce to,

0 = νVxx +gβΘ, (8)

V Γs = αΘxx, (9)

with the solution,
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This suggests the appropriate dimensional velocity, length and
temperature scales for this problem are,
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∆T = ΓwH.

Using these quantities to non-dimensionalise (1) to (5) above
gives,

ut +uux + vuy +wuz = −px +
1

Re
(uxx +uyy+uzz ), (12)

vt +uvx +vvy +wvz =−py +
1

Re
(vxx +vyy +vzz)+

2
Re

T, (13)

wt +uwx + vwy +wwz = −pz +
1

Re
(wxx +wyy +wzz), (14)



ux + vy +wz = 0, (15)

Tt +uTx + vTy +
2v

RePr
+wTz =

1
RePr

(Txx +Tyy +Tzz), (16)

where all quantities are now non-dimensional, the Reynolds
number Re = UH

ν = 2Γw
ΓsPr and the Prandtl number Pr = ν

α . The
Reynolds number can also be expressed in terms of a Grashof
number Gr = gβ∆TH3

ν2 = 4Γw
ΓsPr as Re = Gr

2 , and thus the Reynolds
number is also a Grashof number. The boundary conditions for
the non-dimensional quantities are,

u = v = w = 0, Tx = −1 on x = 0, (17)
u,v,w,T → 0 as x → ∞. (18)

The stability of the one-dimensional flow, given by (10) and
(11) has been investigated using two-dimensional linear stabil-
ity analysis employing a Laguerre collocation scheme. The
stability analysis has provided the critical Reynolds number,
and other properties, and has been shown to accurately predict
the behaviour of a full nonlinear solution obtained via a two-
dimensional direct numerical solution [7, 8]. At Pr = 7, the
critical Reynolds number for the onset of an oscillatory solu-
tion consisting of two-dimensional travelling waves was found
to be Recr ' 8.6.

The heat flux boundary condition solution given above is simi-
lar to that of the vertical slot with different temperatures on the
walls and a uniform vertical gradient, which exhibits boundary
layers near either wall, investigated by Elder [4]. The stability
of these temperature boundary conditions flows has been exam-
ined by Bergholz [2], Christov & Homsy [3], and that of the
stratified fluid near a single wall by Gill & Davey [5].

The transition to turbulence in thermal boundary layers is as-
sociated with the generation of three-dimensional structures
within the boundary layer. Surprisingly however, very few
investigations of the three-dimensional stability properties of
vertical natural convection boundary layers have been carried
out. The definitive experiment was performed by Jaluria &
Gebhart [6] for the boundary layer on a vertical plate heated
by a constant heat flux. A transverse ribbon near the leading
edge was vibrated to trigger instabilities in both the stream-
wise and spanwise directions; the spanwise structures led to
double vortex structures aligned with the streamwise flow dur-
ing the early stages of transition. The wave number of the
spanwise structures was found to be determined by the lateral
length scales present in the ribbon itself; however these struc-
tures were clearly present and were unstable in the sense that
their amplitude increased downstream. The flow associated
with the heat flux boundary condition combined with a stable
background temperature gradient, investigated here, is consid-
ered to be an ideal flow for the further investigation of three-
dimensional transition.

In this paper a full numerical nonlinear three-dimensional solu-
tion will be obtained using an unsteady Navier–Stokes solver.
The results are consistent with those of McBain & Armfield [7]
in that they show that, with increasing Re, the initial instabil-
ity is a two-dimensional travelling wave. A further increase in
Reynolds number then leads to a three-dimensional spanwise
structure.

Results and Discussion

The equations given above are solved in the domain 0 ≤ x ≤
X ,0 ≤ y ≤Y,0 ≤ z ≤ Z with initial conditions;

u = v = w = T = 0, at all x, y, z and t = 0; (19)
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Figure 1: Temperature time series for Re = 9

boundary conditions on x = 0,X ;

u = v = w = 0, Tx = −1 on x = 0, (20)
ux = v = w = Tx = 0 on x = X ; (21)

with periodic boundary conditions on y = 0,Y , z = 0,Z;

.|y=Y = .|y=0, .|z=Z = .|z=0, (22)

for variables u,v,w,T

A second order fractional step Navier–Stokes solver defined on
a non-staggered rectangular grid is used. Time integration is
accomplished using an Adams–Bashforth scheme for the non-
linear terms and Crank–Nicolson for the viscous and diffusion
terms. All spatial terms are discretised using centred second or-
der differences. Continuity is enforced and pressure obtained
using a pressure correction equation. All the discrete equations
are inverted using a pre-conditioned conjugate gradient solver.
The three-dimensional solver is similar to a two-dimensional
solver that has been used for the investigation of natural con-
vection flow for a number of years [1, 7], and the code may be
run in either two- or three-dimensional form.

The results presented in figures 1 to 3 were obtained using the
code in two-dimensional form. These results were obtained
with the domain X = 16,Y = 13.84. The x extent of the do-
main has been chosen to ensure that the large x boundary condi-
tions do not adversely influence the solution, while the y extent
has been chosen to match the most unstable wavelength, based
on a linear stability analysis, at Re = 10. The grid is uniform
in y with ∆y = 0.25 and non-uniform in x with ∆x = 0.025 at
x = 0 and a maximum stretching of 1.025 in the increasing x
direction, giving a grid of 119×55 in x and y. The time step is
∆t = 5×10−4. This grid size and time step has been shown to
be fine enough to provide asymptotic second order convergence
for this flow.

The temperature time series, shown in figure 1, was obtained
with an initial random perturbation added to the temperature
field in the range −.005 to 0.005. The use of an initial per-
turbation reduces the time required for the unsteady solution
to reach full development; however all other features of the
flow, such as frequency, growth rate and fully developed am-
pltitude, are independent of the initial perturbation. As can be
seen the flow shows an inital large growth, associated with the
base flow development. A sinusoidal oscillation is then seen
to develop, growing slowly, and reaching full development by
approximately t = 7000. The early stages of growth of the si-
nusoidal oscillation and the frequency are accurately predicted
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Figure 2: Two-dimensional temperature (a,c) and stream-
function (b,d) contours for Re = 9; total temperature and
stream-function shown in (a,b) and difference from streamwise
mean shown in (c,d).

by the linear stability analysis [7], while the final amplitude is
determined by nonlinear effects.

Figure 2 shows the temperature and stream-function contours
for the Re = 9 flow, where the wave structure is clearly seen in
both fields. The waves travel vertically with a wave velocity of
0.38—approximately the same as the speed of the critical mode
in linear theory. The difference from the streamwise mean is
also plotted, clearly showing the wave structure of the perturba-
tion.

Figure 3 shows the temperature contours for the cases Re = 19
and Re = 20, also obtained with the code in two-dimensional
form. Once again the travelling wave structure of the flow is
clear, with a noticable increase in amplitude when compared to
the Re = 9 results. It is also clear that nonlinear effects have
also increased as evidenced by the strong asymmetry seen in
the waves.

Results obtained with the code in three-dimensional form are
shown in figures 4 and 5. These results were obtained on the do-
main X = 16,Y = 13.84,Z = 16. Once again the x extent of the
domain was chosen to ensure large x boundary effects did not
adversely influence the flow, the y extent was chosen to match
the domain used for the two-dimensional results given above.
The z extent was chosen arbitrarily and will be discussed below.
The grid used has ∆x = 0.1,∆y = 1.0,∆z = 1.0 with stretching
in the increasing x direction of 1.1 and timestep ∆t = 2×10−3 .
This considerably coarser grid and larger time step, than those
used for the two-dimensional simulations, was required to en-
sure reasonable computation times.

Figure 4 shows temperature contours obtained with the three-
dimensional code on constant x and z planes for Re = 19. The
constant z plane result clearly shows a travelling wave structure,
while the constant x result shows no spanwise variation indi-
cating that the solution is two-dimensional. This solution may
be compare directly to the equivalent two-dimensional solution
shown in figure 3(a) where it is seen that the wave structure is
nearly identical. The Re = 19 result is therefore a genuinely
two-dimensional flow, and it is clear that relatively coarse grid
and time step used for the three-dimensional solution is having
only a small effect on the overall flow charater.

(a) (b)

Figure 3: Temperature contours for Re = 19, (a), and Re = 20,
(b) obtained with two-dimensional code.

(a) (b)

Figure 4: Temperature contours for Re = 19 shown on z = Z/2
(a), and x = 0.1 (b) obtained with three-dimensional code.

Figure 5 shows temperature contours obtained with the three-
dimensional code on constant x and z planes for Re = 20. The
constant z plane result again shows a travelling wave structure,
while the constant x plane result now shows a spanwise struc-
ture. The flow has clearly undergone a three-dimensional tran-
sition between Re = 19 and Re = 20 and is now exhibiting a
wave structure in both the y and z directions. Once again the
combined y and z wave structure is travelling vertically. It is
interesting to note that the amplitude of the wave as seen in the
constant z plane results has reduced from Re = 19 to Re = 20,
and also in comparison to the two-dimensional Re = 20 result
shown in figure 3(b).

Figure 6 contains the fourier power spectra of time series for
the two- and three-dimensional solutions for Re = 20. For
consistency in this case both solutions were obtained on the
same, coarse, grid used for the three-dimensional simulation.
Both solutions have a dominant frequency of approximately
0.02, however there are considerable differences in the struc-
ture of the two power spectra. The three-dimensional signal
is marginally lower in amplitude at frequency 0.02, and con-
siderably lower at the first harmonic, frequency 0.04. Addi-
tionally the three-dimensional signal shows a low frequency
mode, at approximately 0.002, that is not seen at all in the two-
dimensional signal. The three-dimensional signal also shows

(a) (b)

Figure 5: Temperature contours for Re = 20 shown on z = Z/2
(a), and x = 0.1 (b) obtained with three-dimensional code.



Figure 6: Fourier power spectra of temperature time series for
two-dimensional and three-dimensional solutions for Re = 20

additional modes close to 0.02 and 0.04 that are not present in
the two-dimensional result. The lower amplitude of the three-
dimensional signal at 0.02 and 0.04 is associated with the re-
duced amplitude of the wave seen in the temperature contours,
noted above, and is very likely to be a result of the transfer
of energy to the spanwise mode, leading to the hypothesis that
the three-dimensional transition is associated with a nonlinear
transfer of energy from the base two-dimensional mode to the
spanwise mode. A single measure of the effect of the travelling
waves is the Nusselt number, defined as the mean ratio of the
heat transfer coefficient to that prevailing under the base flow.
The Nusselt number for the two-dimensional flow at Re = 20 is
approximately 3% greater than that for the three-dimensional
flow, again with both solutions obtained on the coarse mesh
used for the three-dimensional simulation. The reduction in
Nusselt number seen with the three-dimensional flow is again
believed to be a result of the reduced amplitude of the 0.02 and
0.04 frequency modes.

Conclusions

The flow generated by a constant temperature gradient bound-
ary condition on a vertical plate with constant stable back-
ground vertical temperature gradient has been found very useful
for the investigation of stability and transition in natural convec-
tion boundary layers. The sub-critical flow is one-dimensional,
with no variation in the y and z directions, allowing the use
of parallel flow stability analysis techniques. Direct numeri-
cal simulations may be carried out on a reduced domain using
periodic boundary conditions in the y and z directions.

The results obtained by McBain & Armfield [7] demonstrated
that accurate information about the behaviour of the super-
critical flow could be obtained via linear stability analysis. This

provided the critical Reynolds number for transition to oscil-
latory two-dimensional flow, as well as information about the
wave-length and velocity of the fully nonlinear super-critical
flow. The three-dimensional results presented above have
shown that the initial transition is genuinely two-dimensional,
with a further increase in Reynolds number required to generate
a three-dimensional, spanwise, transition.

The results presented here indicate that the critical Reynolds
number for three-dimensional transition is between Re = 19 and
Re = 20. These results were obtained for a domain with span-
wise extent approximately equal to the resolved vertical wave-
length, and it is not immediately clear that this will be the crit-
ical spanwise wave-length. The use of a finite domain with pe-
riodic boundary conditions does limit the resolvable modes to
those with wavelengths that are an integral divisor of the do-
main size, and some care must be taken to examine a number
of domains to determine critical values. Some initial tests with
smaller and larger spanwise extent domains have indicated that
the critical spanwise mode has a wave-length approximately
equal to that of the base two dimensional streamwise mode, as
shown here, giving support to these results, although more work
is required to verify this hypothesis.
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