
15th Australasian Fluid Mechanics Conference
The University of Sydney, Sydney, Australia
13-17 December 2004

DNS of Turbulent Heat Transfer in a Channel Flow
with a Streamwisely Varying Thermal Boundary Condition

Y. Seki1 and H. Kawamura1

1Department of Mechanical Engineering,
Tokyo University of Science, 2641 Yamazaki Noda-shi, Chiba-ken, 278-8510, JAPAN

Abstract

Effect of thermal boundary condition is examined. The direct
numerical simulation of turbulent heat transfer in a fully devel-
oped turbulent channel flow has been carried out for stream-
wisely varying thermal boundary conditions (Re τ = 180) with
Pr = 0.71 to obtain the statistical mean temperature, the tem-
perature variance, their budget terms and the time scale ratio
etc. The obtained results have indicated that the time scale ratio
varies along a stream direction.

Introduction

With the aid of recent developments in super and parallel com-
puters, direct numerical simulation (DNS, hereafter) of turbu-
lent flow is now often performed. The DNS is able to provide
with a large amount of detailed data on the turbulent heat trans-
fer with various thermal boundary conditions. Several experi-
ments [4, 2] and turbulent modelling studies [7] for the stream-
wisely varying thermal boundary conditions had been carried
out in the past studies. However, no DNS has been done for
streamwisely varying thermal boundary conditions.

In the present study, effect of thermal boundary condition is
examined. The DNS of turbulent heat transfer in a fully devel-
oped turbulent channel flow has been carried out for stream-
wisely varying thermal boundary conditions with Pr = 0.71,
Reτ = 180, which is based on the friction velocity u τ and chan-
nel half width δ, Rec = 6600, which is based on the center ve-
locity uc and 2δ. The computational domains are given in fig-
ure 1. The computational domain is divided into three parts; the
entrance region, the test region and the cooling (fringe) region.
In the fringe region, an extra damping function is added in the
energy equation to attenuate the temperature. Thus the periodic
boundary condition can be applied in the streamwise direction
with maintaining the inlet temperature to be zero.
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Figure 1: Configuration.

Numerical procedure

The DNS of turbulent heat transfer in a channel flow have been
performed with Reynolds number of Reτ = 180 (Rec = 6600)
with Pr = 0.71. The computational domain is given in figure 1.
Two infinite parallel plates are assumed. The buoyancy effect is
not taken into consideration to examine the fundamental nature
of the convective turbulent heat transfer in this research.

The coordinates and flow variables are normalized by the

channel half width δ, the kinematic viscosity ν, the friction
velocity uτ, and the maximum temperature of the bottom wall
Tmax. The fundamental equations are the continuity equation:
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and the Navier-Stokes equation:
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Here, i = 1, 2 and 3 indicate the streamwise, wall-normal and
spanwise directions, respectively. The variables t and p are the
time and the pressure. The superscript ∗ indicates that the vari-
ables are normalized by δ. The third term in the right-hand side
of Eq. (2) is the streamwise mean pressure gradient. The bound-
ary condition for the momentum field is

u+
i = 0, at y = 0 and 2 δ. (3)

The enegy equation for the instantaneous temperature
T +(x∗,y∗,z∗) is expressed as
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The endothermal term (Q(x) = λ(x)T ∗) is non-zero only in
the fringe (cooling) region, where fringe function λ(x) is the
strength of the cooling with a maximum of inverse number of
the time step ∆ t∗−1. The form of λ(x) is designed to minimize
the upstream temperature influence. The heating condition at
the bottom wall is

Twall(ξ) = Tmax (sin πξ)2

i f 0 ≤ ξ ≤ 1, else Twall(ξ) = 0 at y = 0,

where ξ = x−xo, xo = 3DL = 3.6δ. (5)

where DL is the heated streamwise length of 1.2δ. Figure 2
shows the thermal boundary condition given by equation (5) at
the bottom wall. On the other hand, the thermal boundary con-
dition at the top wall is assigned to be zero.

Lx ×Ly ×Lz Nx ×Ny ×Nz ∆x+ ∆y+ ∆z+

12.8δ×2δ×6.4δ 512×128×256 4.5 0.2～5.9 4.5

Table 1: Computational conditions.

The simulation has been made with the use of the finite differ-
ence method in which special attention is paid to the consistency
between the analytical and numerical differential operations [5].
The method was confirmed to give good agreement with the
spectral method [6]. The present numerical scheme consistent
with the analytical operation ensures the balance of the transport



equations for the statistical correlations such as the temperature
variance and the turbulent heat flux. A fourth-order central dif-
ference scheme is adopted in the streamwise and spanwise di-
rections, and the second-order central difference scheme is used
in the wall-normal direction. Further details of the method can
be found in [1], [5] and [6]. The computational condition is
shown in table 1. The computation has been performed with the
use of 8 processing elements of VPP5000 at Kyushu University.
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Figure 2: Variation of bottom wall temperature.
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Figure 3: Mean temperature, symbols are experimental data [9],
▽:x′ = 9.6,△:x′ = 37.2,○:x′ = 75.6,□:x′ = 122.4.
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Figure 4: Turbulent heat flux.

Mean temperature profiles are shown in figure 3. If the max-
imum temperature (above ambient) T ′ and the normal distance
γ from the wall where T = 0.5T ′ occurs are chosen as the tem-
perature and length scales respectively, the values of DNS (up-

stream of x ′/δ = 0.8) are similar to experimental data [9] of
heated wall-Cylinder immersed in a turbulent boundary layer.

Figure 4 shows the turbulent heat flux u ′θ′ and v′θ′ in the
near wall region. The interesting feature of figure 4 is that the
counter gradient diffusion exists for u′θ′ behind x ′/δ = 0.8. The
counter gradient diffusion is observed behind x ′/δ = 1.1 for v′θ′
as well.

Turbulent Prandtl number
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Figure 5: Turbulent Prandtl number, ○:Uniform heat
source [3], △:Constant wall temperature difference [8],
□:Uniform heat flux heating [8].

The turbulent Prandtl number Prt , defined as the ratio;

Prt ≡ u+v+

v+θ∗
dT̄∗/dy+

dū+
/

dy+ (6)

of momentum diffusivity to thermal diffusivity, has been eval-
uated from the present data at several stations and is shown in
figure 5. The calculated results [3] for uniform heat source is
plotted in figure 5. The other calculated results of the constant
wall temperature difference and the uniform heat flux heating
by authors’ group [8] are also plotted in figure 5. In most of
the existing studies, Prt tends to be the constant value of 1.0 for
several thermal boundary conditions [3, 8]. In the case of the
present streamwisely varying thermal boundary condition, how-
ever, figure 5 shows that Prt is totally different than the constant
value of 1.0. This tendency is qualitatively similar to that re-
ported in [2]. Generally, Prt is used to obtain the turbulent heat
flux from the mean temperature gradient. Figure 5, however, in-
dicates that it cannot be used for the estimation of the turbulent
heat flux in case of the thermal boundary condition with rapid
streamwise variation, because it changes significantly along the
streamwise direction.

Time scale ratio

The time scale ratio R is expressed as the ratio of the scalar
time scale τθ(= kθ/εθ) to the momentum one τu(= k/ε);

R =
τθ
τu

=
kθ
εθ

ε
k
. (7)

Because the velocity field is the fully developed turbulent chan-
nel flow in this study, the momentum time scale τu(= k/ε) is
constant along the streamwise direction. Therefore, the scalar
time scale τθ(= kθ/εθ) determines R along the streamwise di-
rection. Figure 6 shows the distribution of the time scale ra-
tio. The wall-asymptotic value of R is analytically equal to the
molecular Prandtl number. The near-wall limiting value of R



given in figure 6 becomes indeed the molecular Prandtl number
irrespective of the streamwise direction. On the other hand, the
obtained result in figure 6 has indicated that the time scale ratio
varies along the streamwise direction in the outer region.
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Figure 6: Time scale ratio.
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Figure 7: k∗θ and its dissipation rate.

The value of R at the position x ′/δ = 0.4 is significantly higher
than the unity at y+ = 4.3 in figure 6. As can be seen from
figure 7, it results from the value of the temperature variance
kθ in excess of those of other height at y+ = 4.3. Moreover,
the local minimal value of its dissipation rate εθ is also ob-
served at y+ = 4.3 in figure 7. The local maximal value around
y+ = 0,7.5 occurs to dissipate the energy transported from the
portion of large energy by the molecular and turbulent diffusion.
In fact, the local minimal value of the dissipation rate necessar-
ily exists at the peak of the temperature variance. Therefore, the
peak of the time scale ratio surely occurs at y+ = 4.3.

R is shown in figure 8 where a abscissa axis is assigned to the
streamwise direction. It indicates that the time scale ratio varies
along the streamwise direction. To examine the peak of both
PR1 and PR2, the budget for k∗θ is shown in Fig. 9. The positions
where the maximal and minimal peaks of the time scale ratio ex-
ist are in agreement with those of the production term for k∗θ. In
the case of the present streamwisely varying thermal boundary
condition, the specific feature of Pkθ is that the negative value
of Pkθ exists in latter half of the heated section. To explain the
negative value of the production term Pkθ , the terms which con-
stitute Pkθ in the transport equation of k∗θ are examined. It is
given by

Pkθ = −u′θ′ dT̄
dx

−v′θ′ dT̄
dy

. (8)
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Figure 8: Time scale ratio at the inner region.
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Figure 9: Budget of k∗θ.

The relation among u′θ′, dT̄/dx, v′θ′ , dT̄/dy is seen in figure 4.
In the position of the negative value of Pkθ , u′θ′ and dT̄/dx stay
negative value. Moreover, other constitutive terms stay positive
value in the region.

Figure 10 shows the two dimensional distribution for the pro-
duction term Pkθ of the k∗θ. Solid line shows the positive value
and Dashed line shows the negative value, respectively. The
negative region of the production term occupies a fairly large
area behind the heated section. This is because the hot con-
vection is transported from the upstream, and thus the mean
temperature gradient is inverted in the near-wall region. The
two dimensional distribution of R is also shown in figure 11.
The specific feature of R is that the local maximum exists in the
heated section and the local minimum in latter half of the heated
section. A noticeable agreement in the profiles of Pkθ and R is
observed through the comparison of figures 10 and 11. The re-
gion of the negative of Pkθ is in good agreement with that of the
local minimum of R.

Figure 12 indicates that the tendency of the balance between
kθ and εθ is the same at any downstream position. It is also
shown that the peaks of both k θ and εθ are transported to the
central region of the channel along the streamwise direction.
One can notice that, in general, εθ is high where kθ is large.
More detailed inspection indicates that the contour of εθ pos-
sesses a large number of inflection points than that of k θ. We
have seen in figure 8 that the position of the local minimum
in εθ corresponds to the maximum point of kθ. This trend can
be observed also in the two-dimensional contour of ε θ , which
causes the more complex profile of ε θ than that of kθ.

Conclusions

The DNS of turbulent heat transfer in a fully developed turbu-
lent channel flow has been carried out for streamwisely vary-
ing thermal boundary conditions with Pr = 0.71, Re τ = 180
(Rec = 6600). The thermal turbulence statistics such as the
mean temperature, temperature variance, its dissipation terms,
turbulent Prandtl number, time scale ratio have been discussed.
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Figure 10: Side views of the production term for k∗θ. Solid line are the positive value and dashed line are the negative one. Contour
level is from −1.0×10−4 to 3.0×10−4 with increments of 5.0×10−5.
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Figure 11: Side views of the time scale ratio R. Contour level is from 0.2 to 4 with increments of 0.2.
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Figure 12: Side views of k∗θ (dot line) and ε∗θ (solid line). Contour level for k∗θ is from 1.7× 10−4 to 8.7× 10−4 with increments of
1.0×10−4, while that of ε∗θ is from 1.1×10−6 to 1.7×10−4 with increments of 1.0×10−5.

In this present study, the presented turbulent Prandtl number
cannot be used for estimating because it changes rapidly with
x due to the rapid variation in the thermal boundary condition.
The time scale ratio also varies along the streamwise direction
in the outer region. It results from the tendency that the value of
kθ tends to become rapidly smaller than that of εθ in the near-
wall region behind the heated section. Moreover, it has been
confirmed that the local minimal value of εθ necessarily exists
at the peak of the temperature variance.
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