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Abstract

The study of flow in open helically-wound channels has appli-
cation to many natural and industrial flows, including those in
static spiral separators. The flow consists of a primary axial
component and a secondary cross flow and, in spiral separators,
the fluid depth is typically small making experimental investiga-
tion difficult. Mathematical models are therefore of great value
for determining how such flows are influenced by fluid proper-
ties and geometrical parameters and, hence, for predicting and
improving the performance of these separators. A thin-film ap-
proximation is appropriate and yields an explicit expression for
the fluid velocity in terms of the free-surface shape. The latter
satisfies an interesting non-linear ordinary differential equation
that can easily be solved numerically and in some cases analyt-
ically. The semi-analytic predictions of the thin-film model are
found to be in good agreement with much more computation-
ally expensive solutions of the Navier–Stokes equations.

Introduction

Considerable literature exists concerning mathematical mod-
elling of fully-developed flow inclosedhelically-wound pipes
[1, 2, 3, 10, 19]. These studies have been motivated by a desire
to better understand flows in curved geometries such as arise
in many piping systems, and the human blood circulation sys-
tem in particular. They have shown that, for this type of flow,
a steady-state solution can be computed, comprising a veloc-
ity component along the axis of the pipe and a secondary cross
flow.

Flows in openhelical channels (figure 1) differ most signif-
icantly from their closed-pipe counterparts in having a free
surface. They have been studied in the context of river flow
and sediment transport [17], distillation of petroleum products
[13] and, of particular interest here, spiral particle separation
[4, 5, 7, 8, 9, 11, 15, 16]. They are also used in the separation of
liquids of different densities (e.g. oil from seawater) or solids
and liquids (e.g. in the case of wastewaters) [14].

Spiral particle separators are used in the coal and mineral pro-
cessing industries to segregate and concentrate particles of dif-
ferent sizes and densities [6, 18]. Considerable advances have
been made over the past 40 years in understanding the oper-
ation of these and improving their design. Nevertheless, fine
mineral separation may yet be further improved with a better
understanding of the flow in helical channels [18]. It can also
assist with the understanding of flow in more general curved
channels, such as occur in rivers and pipe networks that run
only partly full.

Experimental studies of helical flows, as in spiral separators,
are difficult because of problems with visualisation of the flow
[7, 8], so that theoretical and computational fluid dynamics are
of great value for predicting performance of new and existing
spirals. Experimental work has indicated that the fluid depth
is small and that some regions of the flow are not laminar [7].
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Figure 1: A right-handed helically-wound channel.

Some CFD simulations have been done [9, 12] but systematic
parameter studies to determine how laminar flows in spiral sep-
arators are affected by variation of fluid properties and geomet-
rical parameters such as curvature and torsion of the helix, and
channel cross-section geometry, have yet to be done. A good
understanding of the laminar flow is a necessary precursor to a
study of the conditions which lead to turbulence or to the (pos-
sibly undesirable) phenomena that develop in the transition to
turbulence.

As in [1, 2, 3, 10], we consider laminar flow and seek a steady-
state solution that is also independent of axial position. This
permits a two-dimensional analysis in the cross-section plane.
As part of the solution process, we must determine the free-
surface profile of the fluid in the channel, making this analysis
significantly different from and more complex than fully devel-
oped flows in closed pipes. The shape of the free surface will
be primarily determined by the curvature of the helix and the
flow rate, so that, at this stage, we ignore surface tension. Since
flows in spiral separators are known to be shallow, we concen-
trate here on thin-film flow. Some consideration to full channels
has been given in [15, 16].

Mathematical Model

As in [15, 16] we consider a channel of half-widtha, heli-
cally wound about a vertical axis with helix radiusA and pitch
2πP (see figure 1). The angle of inclination of the channel to
the horizontal is given by tanα = P/A, and the Reynolds and
Froude numbers are given byR = Ua/ν, F = U/

√
ga, where

U is a characteristic axial flow velocity,ν is the kinematic vis-
cosity of the fluid andg is gravitational acceleration. We also
assume small dimensionless curvatureε = aA/(A2 + P2) and
sufficiently small torsion (τ = ε tanα) such thatRτ = O(ε),
i.e.R tanα = O(1).
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Figure 2: Cross section of channel showing the coordinate sys-
tem. Thex-axis is directed out of the page in the direction of
the primary axial flow.

We use a Cartesian coordinate system with thex-axis in the di-
rection of the primary axial flow andy andz axes in the cross-
section of the channel as shown in figure 2. Lengths are nor-
malised to give a channel half-width of 1. Then, at leading or-
der in ε, the continuity and Navier–Stokes equations give (cf.
[15, 16])
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whereu is the primary axial flow velocity (scaled withU), v
andw are the secondary flow velocity components (scaled with
U/R) in the y and z directions respectively,p is the pressure
(scaled withρU2/R2), andK = 2εR2 is the Dean number asso-
ciated with the centrifugal force acting on the flow.

The system (1)–(4) must be solved subject to the conditions for
an impermeable, no-slip channel wall, zero stress and the kine-
matic condition at the free surface, and some prescribed vol-
ume flux Q down the channel, to give the velocity and pres-
sure distributions in the flow domain and the free-surface shape
F(y,z) = 0. In practice it is simpler to prescribe the cross-
sectional areaΩ of the flow domain, rather than the volume
flux; thenQ is computed as an output by integratingu(y,z) over
the flow domain, once it has been determined.

In general the solution must be obtained numerically and a
method employing finite-element techniques is discussed and
demonstrated in [15, 16]. As discussed in those papers, it is
necessary to determine the contact points of the free surface
with the no-slip walla priori or have a means of adjusting them
during the solution process. Here, we use our thin-film solu-
tion (discussed below) to obtain first (and very good) estimates
of the contact points, and then adjust them iteratively until the
required accuracy is achieved.

Thin-Film Approximation

We obtain approximate equations for flows of small depth by
defining new variablesz = δz̃, v = Rδṽ, w = Rδ2w̃ and p =
Rp̃/δ, whereδ ≪ 1 is a small aspect ratio. We also choose
δ2R/F2 = 1, i.e. velocity scaleU = δ2ρga2/µ. Substituting
into equations (1)–(4) gives, at leading order inδ,

∂ṽ
∂y

+
∂w̃
∂z̃

= 0, (5)

∂2u

∂z̃2 +sinα = 0, (6)

−
∂p̃
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+
∂2ṽ

∂z̃2 +χu2 = 0, (7)

−
∂p̃
∂z̃

−cosα = 0, (8)

whereχ = δK/2R is taken to be O(1). Under the thin-film scal-
ing, the boundary conditions on the free surfaceF(y, z̃) = 0 be-
come

∂u
∂z̃

= 0,
∂ṽ
∂z̃

= 0, p̃ = 0 and ṽ
∂F
∂y

+ w̃
∂F
∂z̃

= 0.

Let the channel shape be given by ˜z= H(y) and the fluid depth
be h(y) so that the free surface is at ˜z = H(y) + h(y). Then
we may write the solution to the thin-film equations in terms
of the functionsH(y) andh(y). Thus, integrating (6) and (8),
substitutingu and p̃ into (7) and integrating for ˜v we obtain

u =
sinα

2
(z̃−H)(H +2h− z̃),

p̃ = cosα (H +h− z̃),

ṽ = −
χsin2 α

120
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]

−
cosα

2
d
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(H +h)× (z̃−H)(H +2h− z̃).

Writing the continuity equation (5) in the alternative form

∫ H+h

H
ṽdz̃= 0,

substituting for ˜v and integrating yields a first-order ordinary
differential equation forh for any prescribed channel shape ˜z=
H(y):

cosα
d
dy

(H +h) =
6χsin2 α

35
h4. (9)

Defining the stream functionψ such that∂ψ/∂z̃ = ṽ and
−∂ψ/∂y= w̃, substituting for ˜v, integrating and requiringψ = 0
on z̃= H(y) we obtain

ψ =
χsin2 α

840
(z̃−H)2(H +2h− z̃)2(H +h− z̃)×

[

(H +h− z̃)2−5h2
]

. (10)

The volume fluxQ = δQ̃ down the channel is given by

Q̃ =
∫ r

ℓ

∫ H+h

H
u dz̃dy=

sinα
3

∫ r

ℓ
h3 dy, (11)

while the cross-sectional area of the flow domainΩ = δΩ̃ is
given by

Ω̃ =
∫ r

ℓ
h dy, (12)

wherey = ℓ and y = r are the left and right ends of the free
surface, respectively.

To obtain a thin-film solution for any given channel shape ˜z=
H(y) we must solve (9) subject to either (11) or (12) for the fluid
depthh(y). Let h(ℓ) = hℓ andh(r) = hr be the fluid depth at
the contact points, i.e.(ℓ,hℓ) and(r,hr) determine the points of
contact of the free surface with the channel wall andℓ ≤ y≤ r.
For any channel geometry, two of the four valuesℓ, r,hℓ,hr will
be known and two must be determined as part of the solution;
which two are known depends on the specific channel geometry.
In this paper we will consider two different cases, as follows.



1. A rectangular cross section,H(y) = 0, −1≤ y≤ 1. In this
case the left and right ends of the free surface are on the
left and right walls of the channel, so thatℓ = −1, r = 1.
However, the fluid depthshℓ,hr are unknown.

2. A parabolic cross section,H(y) = y2. In this case we have
zero fluid depth at each end of the free surface, i.e.hℓ =
hr = 0, but the positionsy = ℓ, r are unknown.

For simple cross sections (such as the rectangular one) we can
obtain the thin-film solution analytically, but for more general
cross sections (such as the parabolic one) we must solve the
thin-film equations numerically, for which we useMatlab as
follows.

We first guess the unknown value at the left end of the free sur-
face,hℓ for the rectangular channel orℓ for the parabolic chan-
nel. Then,(ℓ,hℓ) together with (9) defines an initial value prob-
lem that is readily solved using the built-in 4th-order Runge-
Kutta solver, to giveh(y). Finally, we compute the volume flux
Q̃ from (11), iteratively adjusting the initial value to give the
required flux. Alternatively we may compute the cross-section
areaΩ̃ from (12) to adjust the initial value.

Having solved forh(y) we are able to determine the primary
axial velocity u and the pressure ˜p, and compute streamlines
from (10). If desired the cross-flow components ˜v, w̃ may also
be calculated.

Comparison of Full Computational and Thin-Film Results

Because of the ease with which we can solve the full Navier–
Stokes equations for a specified flow-domain area (and the dif-
ficulty in a priori prescribing a specified volume flux), it is con-
venient to compare thin-film solutions and finite-element solu-
tions of the full Navier–Stokes equations for a specified flow
domain areãΩ rather than the volume flux̃Q. Thus, we choose
the left boundary(ℓ,hℓ) for the thin-film solution to give the re-
quired areãΩ. We then use the thin-film solutionh(y), ℓ≤ y≤ r
as input to our Navier–Stokes model, which we then solve it-
eratively for the flow velocities, pressure and (modified) free-
surface shape. Depending on the desired accuracy this can be a
time-consuming process.

The difference in the volume flux̃Q between the thin-film and
Navier–Stokes models gives one (global) measure of compari-
son. In addition, we may compare contour plots of pressurep,
primary axial velocityu, and so on, from each model. Com-
paring the cross-flow streamlinesψ = constant is particularly
informative.

Solutions for both rectangular and parabolic channels have been
obtained with a flow domain areãΩ = 2 and aspect ratioδ = 0.1.
For the thin-film model we already haveδ2R/F2 = 1 and we
now choose

χsin2 α
cosα

= 1.

For the Navier–Stokes model, if we take tanα = 4/3, then we
must have

Rsinα
F2 =

sinα
δ2 = 80,

and we further choose

R2cosα
F2 =

Rcosα
δ2 = 1200.

Together, these imply thatR= 20 andK = 375.

The cross-flow streamlines and free surface for the rectangular
channel for both thin-film and Navier–Stokes models are plot-
ted in figure 3. The volume flux given by the thin-film model is
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Figure 3: Streamlines of the cross flow in the rectangular chan-
nel. Blue (solid) curves correspond to the thin-film model and
green (dashed) curves correspond to the Navier–Stokes model.
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Figure 4: Streamlines of the cross flow in the parabolic channel.
Blue (solid) curves correspond to the thin-film model and green
(dashed) curves correspond to the Navier–Stokes model.

Q̃ = 0.55, while the Navier–Stokes model givesQ̃ = 0.51. The
differences in the two solutions are primarily due to the verti-
cal side-wall channel boundaries, which are not captured by the
present simple thin-film model. In reality there is a thin bound-
ary layer along these walls which the thin-film solution does not
show, but which is shown in the solution to the Navier–Stokes
model. The thickness of these boundary layers reduces with the
aspect ratioδ, and in the thin limit approaches zero thickness.
Hence the smaller the value ofδ used for our Navier–Stokes so-
lution, the better the agreement with the thin-film solution. The
effect of this boundary layer is greater at the wall on the out-
side of the channel curve, where velocities are greatest, than at
the wall on the inside of the curve, where velocities are much
smaller. For the case shown (δ = 0.1) we note that, despite the
difference between the two models shown by the streamlines,
the free-surface shape is quite similar over 85% of its length.
Only near the wall at the outside of the channel curve is there
any substantial difference.

For smooth channel cross sections (such as the parabolic one)
both models incorporate the impermeable, no-slip boundary
conditions over the entire channel wall, so we expect to see
better agreement between them in this case. The agreement is
indeed very good, as shown in figure 4 where the cross-flow
streamlines and free surface for both models are plotted. The
free-surface shape differs only slightly between the two mod-
els, and the streamlines are also quite similar. The thin-film
model gives a volume flux of̃Q = 0.62 and the Navier–Stokes
model givesQ̃ = 0.61, again showing good agreement.



Conclusions

Flow in helically-wound channels of small curvature is gov-
erned by the Navier–Stokes equations with an extra term rep-
resenting the centrifugal force. These equations must, in gen-
eral, be solved numerically. In some practical applications the
flows in such channels are shallow for which a thin-film ap-
proximation is appropriate. We have derived a thin-film model
and shown that the flow solution can be written in terms of the
free-surface shape and the prescribed channel geometry. The
free-surface shape is given by a non-linear ordinary differential
equation. Solutions are readily obtained for a wide range of
channel geometries.

Comparison of results from the Navier–Stokes and thin-film
models for rectangular and parabolic channels have been ob-
tained. For the rectangular channel, which has vertical wall
boundaries that are handled differently by the two models, the
general character of the flow solutions is similar, but they dif-
fer near these boundaries, most significantly near the wall on
the outside curve of the channel. However, for a channel with a
smooth cross section (such as the parabolic one) the two models
effectively impose the same boundary conditions and the solu-
tions are in close agreement. For the parabolic channel the thin-
film model gives a solution of excellent accuracy at a fraction
of the computational effort required to solve the Navier–Stokes
equations. This leads us to believe that our thin-film model has
excellent potential to provide valuable information on practi-
cal open-channel flows (such as occur in spiral separators) both
quickly and cheaply. Work is being continued to determine the
parameter range over which our thin-film model is valid.

Acknowledgements

Funding from the UK EPSRC (Research Grant GR/ S71873)
and the University of Adelaide Special Studies Program to sup-
port a visit by YMS to the University of Strathclyde is gratefully
acknowledged.

References

[1] Berger, S.A., Talbot, L. and Yao, L.-S., Flow in curved
pipes,Ann. Rev. Fluid Mech., 15, 1983, 461–512.

[2] Germano, M., On the effect of torsion on a helical pipe
flow, J. Fluid Mech., 125, 1982, 1–8.

[3] Germano, M., The Dean equations extended to a helical
pipe flow,J. Fluid Mech., 203, 1989, 289–305.

[4] Holland-Batt, A.B., Spiral separation: theory and simula-
tion, Trans. Instn Min. Metall. (Sect C: Mineral Process.
Extr. Metall.), 98, 1989, C45–C60.

[5] Holland-Batt, A.B. and Holtham, P.N., Particle and fluid
motion on spiral separators,Min. Eng., 4, 1991, 457–482.

[6] Holtham, P.N. and Stitt, P.H., Developments in Australian
spiral separator technology,Minerals and Exploration at
the Cross Roads, Aus. IMM Annual Conf., Sydney, 1988,
p. 165.

[7] Holtham, P.N., Flow visualisation of secondary currents
on spiral separators,Min. Eng., 3, 1990, 279–286.

[8] Holtham, P.N., Primary and secondary fluid velocities on
spiral separators,Min. Eng., 5, 1992, 79–91.

[9] Jancar, T., Fletcher, C.A.J., Holtham, P.N. and Reizes,
J.A., Computational and experimental investigation of spi-
ral separator hydrodynamics,Proc. XIX Int. Mineral Proc.
Congress, San Francisco, 1995, 147–151.

[10] Kao, H.C., Torsion effect on fully developed flow in a he-
lical pipe,J. Fluid Mech., 184, 1987, 335–356.

[11] Matthews, B.W., Fletcher, C.A.J., Partridge, A.C. and Jan-
car, T., Computational simulation of spiral concentrator
flows in the mineral processing industry,Chemeca ’96.

[12] Matthews, B.W., Fletcher, C.A.J. and Partridge, A.C.,
Computational simulation of fluid and dilute particulate
flows on spiral concentrators,Inter. Conf. on CFD in Min-
eral & Metal Processing and Power Generation, CSIRO,
1997, 101–109.

[13] Morton, F., King, P.J. and McLaughlin, A., Helical-coil
distillation columns Part I: Efficiency studies,Trans. Instn
Chem. Engrs, 42, 1964, T285–T295.

[14] NASA Patent No 5 248 421, Spiral fluid separator, Mar-
shall Space Flight Center, Technology Transfer Program.

[15] Stokes, Y.M., Flow in spiral channels of small curva-
ture and torsion, inIUTAM Symposium on Free Surface
Flows, Proceedings of the IUTAM Symposium, Birming-
ham, United Kingdom, 10–14 July 2000, editors A.C.
King and Y.D. Shikhmurzaev, Kluwer, 2001, 289–296.

[16] Stokes, Y.M., Computing flow in a spiral particle separa-
tor,Proceedings of the 14th Australasian Fluid Mechanics
Conference, Adelaide University, Australia, 9–14 Decem-
ber 2001, 677–680.

[17] Thomson, J., On the origin of windings of rivers in alluvial
plains, with remarks on the flow of water round bends in
pipes,Proc. R. Soc. Lond. Ser. A, 5, 1876, 5–8.

[18] Weldon, B., Fine Coal Beneficiation: Spiral separators in
the Australian industry,The Australian Coal Review, Nov.
1997, 25–28.

[19] Zabielski, L. and Mestel, A.J., Steady flow in a helically
symmetric pipe,J. Fluid Mech., 370, 1998, 297–320.


