Dynamic Analysis of Airflow Features in a 3D Real-Anatomical Geometry of the Human Nasal Cavity

H. Tang¹, J.Y. Tu¹, H.F. Li¹, B. Au-Hijleh¹, C.C. Xue², C.G. Li²
¹School of Aerospace, Mechanical & Manufacturing Engineering
²School of Health Sciences
RMIT University, Melbourne, VIC, 3083 AUSTRALIA

Abstract
Drug delivery in the human respiratory tract is a long standing challenge due to the complexity of the geometry and materials properties. This paper presents a brief summary of flow features in the human respiratory system and simulates an airflow field based on a 3D real-anatomical geometry of the human nasal cavity. A Lagrangian particle-tracking approach is adopted in the flow field solver for the dispersed phase. The dispersion characteristics of particles through the airflow are investigated under the quiet breathing. The particles passing through the domain sections for different value of particle density, diameter and flow rate are investigated. The particle deposition efficiency is also studied. These were compared with experimental data, and results of previous simulations. It is noted that the transportation, dispersion and deposition of particles can be controlled by the particle properties and flow rate. The numerical results show good agreement with previous experimental and computational studies, which are useful for the optimisation design of therapy methodologies, treatment devices and drug materials.

Introduction
Drug delivery in the human respiratory tract is a long standing challenge due to the complexity of the geometry and materials properties. Inhaling micronized drugs is highly effective and convenient. Information on the velocity distribution and local concentration of solid particle is very important in the design of inhalers that deliver the drugs into lung airways. Scaled-up laboratory models can be used to study the flows in the human respiratory tract; however, the time consuming and expensive nature of experiments carried out in this area mean that computational studies of the processes taking place will become convenient. Information on the velocity distribution and local concentration of particles through the airflow are investigated. The airflow rate is assumed to be particulate flow with a uniform diameter from 1–40μm, particle density \(\rho_p \) is varied from 500 kg/m\(^2\) to 2000 kg/m\(^2\).

Fluid Dynamic Perspective of the Human Respiratory System

Flow Features
The flow features of the airway in the human respiratory system are extremely complex, involving characteristics of multiple-phase flows in laminar, turbulent and interactive conditions as summarized in Table 1.

A solo simulation approach is difficult to cover all flow features as shown in table 1. Therefore, what’s simulation approaches should be taken is depend on main concerns of investigation; physical model was established on a simplified concept and coupled with suitable mathematic algorithms. However, the computational domain should be close to the real-anatomical geometry in order to capture real flow feature. It is worth emphasizing that the geometry of the nasal cavity is a major determination factor of the particle deposition pattern and airflow field.

Anatomical Geometry and Computational Domain
The nasal cavity is a complex structure as shown in Figure 1, an anatomical illustration of a left nasal cavity of adult. A 3D real-anatomical geometry reconstructed from a CT fine-scanned data is shown on Figure 2. The surface of this real nasal cavity has complex boundary features, is desirable for the investigation. However, numerous detail boundary features result in hung mesh grids and computation time consuming leading to impracticable at this stage.

An anatomically corrected model of an adult nose was used as a computational domain in present study as shown in Figure 3. It is reconstructed from a CT scanned data via CAD solid model design software, but has been smoothed due to less slice data. This model was developed originally by Prof. Scherer and his bioengineering research group at the Department of Bioengineering, University of Pennsylvania and used in several of their published works [7, 11, 12] and further improved on mesh construction by present study.

Flow Configuration
The range of computational domain is shown in blue coloured area of the anatomical illustration in Figure 1. The model of computational domain is shown in Figure 3. The domain is divided into 9 sections.

The airflow rate \(\Psi \) is corresponding to normal quiet breathing for a single nostril. Laminar flow is simulated. Drug delivery is assumed to be particulate flow with a uniform diameter \(D_p \) from 1–40μm, particle density \(\rho_p \) is varied from 500 kg/m\(^2\) to 2000 kg/m\(^2\).
Breathing conditions	Behaviour & Symptoms	Related locations	Main flow features	Simulation approaches
1 Normal: | Inspiration | a. nasal cavity | Periodic flow, Laminar flow, Gap flow, small deformation at the junction of b and c. | sinusoidal velocity profiles, single phase approach |
- quiet | Expiration | b. larynx | | |
- resting | Flow rate of 125-200 ml/s | c. trachea | | single phase approach, multiphase approach, turbulent model |
- sleeping | | d. bronchi | excessive dry/secretion of the mucousal surface permeation flow | liquid film flow model specific boundary model |
2 Abnormal: | -sneezing | a-d. | high flow rate with deformatations and vibrations in c or d-e | FSI approach, acoustic approach |
- exertion | -morbid surface | e. mouth | | |
- sickness | | | | |
- physical | -cough | | | |
exercise | -snore | | | |
| -yawn | | | | |
3 Drug delivery: | Therapy spray | | | |
- inhaler | | | | |
- collunarium | | | | |
4 Air pollutions: | Silicosis | a. nasal cavity | aerosol flow, droplet flow, free surface flow permeation flow biological reaction | multiphase approach, FSI approach, porous media model, |
- dust air: inorganic dust, organic dust, synthetic material dust -chemical gas | Asbestosis | b. larynx | | |
chronic obstructive pulmonary diseases, COPD | c. trachea | | | |
- asthma | d. bronchi | | | |
- nasal polyp | | | | |
- heavy vibrissae | | | | |
- foreign-body | | | | |
- sneezing | | | | |
Flow rate of 200-625 ml/s | - sneezing | | | |
- excessive dry | | | | |
- foreign-body | | | | |
- heavy vibrissae | | | | |
- nasal polyp | | | | |
- morbid surface | -cough | a-d. | | |
- snore | | e. mouth | | |
- yawn | | | | |
Flow rate of 125-200 ml/s | -sneezing | | | |
- excessive dry | | | | |
- foreign-body | | | | |
- heavy vibrissae | | | | |
- nasal polyp | | | | |
Expiration | Inspiration | a. nasal cavity | Periodic flow, Laminar flow, Gap flow, small deformation at the junction of b and c. | sinusoidal velocity profiles, single phase approach |
Inspiration | Expiration | b. larynx | | |
Flow rate of 200-625 ml/s | | c. trachea | | single phase approach, multiphase approach, turbulent model |
Flow rate of 125-200 ml/s | | d. bronchi | excessive dry/secretion of the mucousal surface permeation flow | liquid film flow model specific boundary model |
Stokes number St_{min} is defined: $St_{\text{min}} = \frac{d_{p} \sqrt{\frac{p}{\rho_{\text{air}}}}}{18 \mu \cdot \frac{L}{h}}$, where d_{p} is the aerodynamic diameter and is a function of the particle diameter and density.

Table 1. Fluid dynamic perspective of the human respiratory system.

![Figure 1](image1.png)

Figure 1. An anatomical illustration of left nasal cavity, shaded (blue) area show the range of computational domain in present study.

![Figure 2](image2.png)

Figure 2. A 3D real-anatomical geometry reconstructed from CT fine-scanned data show the complex boundary details.

The particle deposition is defined in terms of Local Particle Deposition efficiency (LPD) = ([number of particles entering the section n] - [number of particles exiting section n]) / [number of particles entering section n].

![Figure 3](image3.png)

Figure 3. Computational domain is an anatomically corrected model of an adult nose built from CT slice data.
The particle density is normalized by the reference density \(\rho_o \) which is equal to 1000 kg/m\(^3\) for the SI units used in the current study.

Numerical Methods

Dynamic analysis of airflow in the human nasal cavity is conducted in numerical simulation through a commercial package Fluent. Simulation of flow fields is performed by solving full Navier-Stokes equations. In order to track individual particle behaviour, discrete phase model (DPM) Lagrangian method is used to trace the dispersion of particles about the trajectory. The Lagrangian scheme treats the particle phase as a discrete phase, and the fluid phase as a carrier phase in a Eulerian frame. Trajectories of individual particles can be tracked by balancing the forces acting on them. The Lagrangian scheme is most popular in engineering applications for the prediction of particulate flows because it can easily be combined with a stochastic scheme, albeit with high computational cost. In the Lagrangian model, the fluid phase is solved by Eulerian equations, and then integrates Lagrangian equations of motion for the dispersed phase; tracking individual particles through the flow field.

Governing Equations

Under the assumption that the ambient air is incompressible, has constant density and viscosity, and the flow is steady and laminar, the governing equations can be expressed in the following form:

the continuity equation:

\[
\nabla \cdot \vec{\rho} = 0 \tag{1}
\]

and the Navier–Stokes equation:

\[
\nabla \cdot (\rho \vec{V}) = -\nabla P + \nabla \cdot (\tau) + \vec{F} \tag{2}
\]

where \(\rho \) is the gas density, \(P \) the static pressure, \(\tau \) the stress tensor and \(\vec{F} \) the external body force.

The equations are discretized in space using a cell-centered finite volume formulation. The coupling between pressure and velocity is solved using the Semi-Implicit Method for Pressure Linked Equations (SIMPLE) algorithm. Time integration is performed using a line Gauss–Seidel (LGS) iterative scheme. A multigrid scheme, which involves four automatic successive coarsenings of the original grid, is used to enhance convergence of the pressure correction equation.

Lagrangian Dispersed Phase Model

The Lagrangian dispersed phase model [14] is used for the prediction of the trajectory of a particle. This is done by integrating the force balance on the particle. The force balance equates the particle inertia with the force acting on the particle, and can be written as:

\[
\frac{du}{dt} = F_p(u - u_p) + g_\rho(\rho_p - \rho) + F_x \tag{3}
\]

where \(F_p(u-u_p) \) is the drag force per unit particle mass and

\[
F_p = \frac{18 \mu}{\rho_o D_p^2} \frac{C_p \text{Re}}{24} \tag{4}
\]

The term \(F_x \) represents additional forces such as thermophoretic force, Saffman’s lift force or virtual mass force. However, provided that the particles meet the condition that \(\rho_p > \rho \), these terms can be neglected, except for the force caused by the pressure gradient in the fluid when there are high acceleration forces present:

\[
F_x = \left(\frac{\rho}{\rho_p} \right) \frac{\partial u}{\partial x} \tag{6}
\]

The term \(g_\rho \) is the gravitational body force. The drag coefficient, \(C_p \), is given by:

\[
C_p = a_1 + \frac{a_2}{R_e} + \frac{a_3}{R_e^2} \tag{7}
\]

where the constants are given by Moris and Alexander [15], and take account of ultra-Stokesian drag.

The momentum transfer from the continuous phase to the particle phase is computed by examining the change in momentum of a particle as it passes through each control volume.

Results and Discussions

Numerical computations are focused on flow behaviour of particle transportation and deposition through the sections, which can be used by pharmaceutical companies and clinicians who need to predict and optimise inhaled therapies.

Particle Transportation through Domain Sections

Particle transportation through the domain section is numerically predicted as shown in Figure 4, which is mainly controlled by particle size and density. It is notice that nasal cavity has a filtering and carrying function depending on different properties of particle. It can be concluded that such numerical simulation can provide the convenient way to optimise various range materials to be inhaled.

![Figure 4. Particle transportation through domain sections at the 125ml/s airflow rate, comparing with different material properties of particle, e.g. (500, 1) = (density, diameter).](image)

Particle Deposition Efficiency

Particle depositions along the flow channel are shown in Figure 5. A concentration peak is appeared at the middle section for high density particle, the peak move into downstream sections.
Comparisons of velocity profiles
Comparison of velocity profile at the section 8 is shown in Figure 6, with previous experimental [8] and computational [11] results.

Comparisons of total deposition efficiency
Comparison of total particle deposition efficiency is shown in Figure 7, with previous experimental [16, 17] and calculated [13] results. The discrepancy shown that different approaches are difficult to replicate the nasal flow processes.

Conclusions
Airflow features in the human nasal cavity have a strongly influence on the drug delivery process and particle physical characteristics. Numerical simulation provides the convenient way to optimise various drug materials to be inhaled.

Acknowledgments
The financial support from ARC Linkage grant and RMIT-VRII grant on this work is gratefully acknowledged.

References