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Abstract 
Statistics of passive and reactive scalar concentration in a scalar 
mixing layer are modelled using a Lagrangian particle model 
coupled to a micro-mixing model and using conserved scalar 
theory for the chemistry. Good agreement is obtained with 
laboratory experiments for passive scalar statistics. Reasonable 
agreement is obtained with laboratory data for reactive scalars on 
the edges of the mixing layer, but both the mean and variance are 
over-estimated in the middle of the layer. It is suggested that this 
discrepancy may be due to a flow instability in the experiments.  
 
Introduction  
Modelling chemical reactions in turbulence is well-established in 
chemical engineering flows such as flames and other combustion 
devices, but is less advanced in environmental flows. The critical 
aspect of the problem is that the mean rate of reaction depends on 
the mean of the product of the instantaneous concentrations of 
the reactants, not on the product of the mean concentrations. 
Since both turbulent mixing and chemical reaction can affect this 
mean product, it is important to include both of these processes, 
and their interaction, in the model.  
 
When a step change in temperature in a direction transverse to 
the flow is acted upon by turbulence, the interface between hot 
and cold fluid, which thickens with distance downstream, is 
known as a thermal mixing layer. More generally, when the 
transported scalar quantity is the concentration of some 
contaminant species, the interface is known as a scalar mixing 
layer. If the temperature difference is small, or the species dilute, 
the scalar material has no effect on the flow and the interface is 
known as a passive scalar mixing layer.  
 
The scalar mixing layer has been studied experimentally in grid 
turbulence using both temperature [1] (and references therein) 
and chemical species [2]. Bilger et al. [2] also studied the 
reaction of two species introduced as separated streams upstream 
of the grid (see their figure 1 for a schematic of the 
configuration). Recently de Bruyn Kops et al. [3] studied reacting 
scalar mixing layers using direct numerical simulation.  
 
The reacting scalar mixing layer is an important prototype for 
more complex and realistic configurations. On one hand, its 
simplicity and symmetry make it relatively easy to study. On the 
other hand it increases in scale with distance from the source, and 
is similar in this respect to plumes from localised sources which 
figure so prominently in atmospheric and other environmental 
applications. In this paper we use a Lagrangian model for the 
motion of fluid particles coupled to a simple micro-mixing model 
to represent the turbulent transport and mixing of a passive 
conserved scalar in a scalar mixing layer. We then use conserved 
scalar theory [2] in various limits to model the statistics of 
chemically reactive species. 
 
Transport and Mixing of a Conserved Scalar 
In common with most theoretical approaches, for convenience we 
represent both the scalar mixing layer and the grid turbulence as 
non-stationary, spatially homogeneous analogues of the 
experimental systems which are stationary and inhomogeneous in  

 
the stream-wise direction. This is achieved through the Taylor 
transformation x –x0 = x′ = Ut and requires that the stream-wise 
velocity fluctuations be small compared with the mean velocity 
U. For generality we allow the origin of the mixing layer x0 = Ut0 
to be non-zero. We thus represent the source of the conserved 
scalar as an instantaneous function of the cross-stream position z 
 ( ) )()(1),( 0 tzHctzS δ−=  (1) 

where H(z) is the Heaviside function and we have taken the 
source concentration in the lower stream to be c0. The scalar 
concentration statistics are thus functions of z, t and the travel 
time from the grid to the source, t0. Note that the time origin is 
the source release time. 
 
Lagrangian theory relates the 1-point displacement statistics for 
independent marked fluid particles to the mean concentration of 
the scalar field [4]. Marked particles conserve the concentration 
assigned to them at the labeling time, which is usually associated 
with the source. Much success in modelling the mean 
concentration under a wide range of turbulence and scalar source 
conditions has been obtained using stochastic models in which 
the velocity u and position x along the trajectory of a marked 
fluid particle are treated as a joint continuous Markov process. 
For decaying grid turbulence we have  
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where the deterministic terms ensure that the probability density 
function (pdf) for the Eulerian velocity component w is Gaussian 
with variance )(2 twσ , C0 is the Lagrangian velocity structure 
function inertial sub-range constant [5], )(tε is the rate of 
dissipation of turbulence kinetic energy and ξ is the Wiener 
process [6]. We represent 2

wσ  and ε as power-law functions of 
travel time from the grid and take C0 = 3 [7]. 
 
Marked particle statistics generated using Eq. (2) produce 
concentration fluctuations because particles arriving at the 
receptor point in different realizations can have different 
concentrations according to their location with respect to the 
source at the labeling time. In order to account for the dissipation 
of scalar variance, we add to (2) an equation describing the 
evolution of the scalar concentration c along a trajectory. This is 
known as a micro-mixing model, and here we use the interaction 
by exchange with the conditional mean (IECM) model [8] for 
which 
 ( ) mtwccdtdc ><−−= |  (3) 

where <c | w> is the conditional mean concentration given the 
velocity and tm is the mixing time scale. This is perhaps the 
simplest mixing model to satisfy the ideal properties set down by 
Pope [9]. In particular it ensures that the mean concentration, and 
other 1-point statistics such as the flux and the conditional mean 
concentration, are unaffected by mixing and so can be calculated 
from marked particle statistics. Then, we have [10] 
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where σz(t) is the dispersion of marked particles and the 
correlation between the velocity and position along a trajectory is 

( ) ( )zwwwz t σσσρ 22 ∂∂= . For decaying grid turbulence Anand 
and Pope [11] give an analytical result for σz(t). Although we do 
not show it explicitly, all these quantities also depend on the 
source time t0. 
 
The mixing model (3) implies a closure for the mean scalar 
dissipation conditional on the scalar concentration [10] 
 ( ) mic tcccxcc ~|| 22 −−=∂∂= κε  (6) 

where dwcwPwccc ∫= )|(|)(~ . Note that for simplicity we use 

the same notation for the physical variables c and w and their 
corresponding sample space variables. 
 
Various researchers have recently shown that for developing 
scalar fields such as plumes from small sources, the mixing time 
scale grows linearly with time [7, 10]. We expect the scalar 
mixing layer to behave similarly since its thickness grows at the 
same rate as a line plume. Thus we take tm = bt and determine the 
value of the constant b by fitting appropriate experimental data. 
For this purpose we use the most completely documented set of 
experimental results, those of Ma and Warhaft [1]. 
 
Thus we have finally a closed set of equations which can be 
solved for the velocity, position and concentration along a fluid 
trajectory. We used 5×105 trajectories with initial positions (at 
t = 0) distributed uniformly across the domain, initial velocities 
drawn from a Gaussian distribution with variance )0(2

wσ  and 
initial concentrations given by the source function (1). The 
computational domain spanned the region |z| ≤ 0.2 m, the width 
of the wind tunnel of Ma and Warhaft [1], with perfect reflection 
at the boundaries. Because the integration was stopped well 
before the width of the mixing layer (i.e. σz) reached the width of 
the domain, the results are insensitive to the boundary conditions. 
At specified sampling times, the cross-stream position z, the 
concentration c and the velocity w were sorted jointly into bins of 
width 0.2σz, 0.0125c0 and 0.2σw respectively, so that joint 
statistics of velocity and concentration could readily be 
calculated as functions of cross-stream location and travel time. 
The mean wind speed and the turbulence decay power laws were 
taken from Table I of Ma and Warhaft [1].  
 
Ma and Warhaft [1] introduced the initial step profile into the 
turbulence at the grid using an upstream “toaster” and at a range 
of distances down stream from the grid using a “mandoline”. 
When scaled by the width of the mixing layer all their data for 
the mean concentration profile collapse onto the error function 
profile (4). Figure 1 shows that the evolution of the root-mean-
square (rms) concentration fluctuations σc on the centreline can 
be represented well if we choose a value b = 0.5 for the constant 
of proportionality in the mixing time scale. This is lower than the 
value of 1.2 used by Sawford [7] to fit wind tunnel data for a line 
plume. The model with b = 0.5 also represents very well profiles 
for the rms concentration (figure 2) and, although we do not 
show results here, for the skewness and kurtosis of concentration 
fluctuations across the mixing layer. 

1 10 100
t/t0

0

0.1

0.2

0.3

σ c
(0

,t)
/c

0

x0/M=20
x0/M=2
Ma & Warhaft
x0/M=20
Ma & Warhaft
x0/M=0

 
Figure 1. Comparison of model prediction for the centreline standard 
deviation of concentration fluctuations with the results of Ma and 
Warhaft [1] using a mixing time scale tm = 0.5t. 
 
The model results in figure 1 show that scaling in terms of t0 
collapses results for different source locations, and that for large 
values of t/t0 the centreline rms is constant, as is also observed in 
the data. Thus, although we cannot explicitly model the case 
where the source is at the grid because the power-law 
representations of the turbulence diverge at the grid, we can 
approximate it by choosing x0 suitably small, so that at the 
distance of interest (x-x0)/x0 is larger than about 50. This limit is 
of interest for the chemically reacting case, because x0 = 0 for the 
experimental results of Bilger et al. [2].  
 
We calculated the pdf for the scalar concentration P(c) and the 
conditional scalar dissipation at a range of values of t/t0. Details 
are given in Sawford [10]. For t/t0 greater than about two the 
results are well-fitted by the simple forms 
 222
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and 
 γγγ )1()()( ccBcP −=  (8) 

In the limit t/t0 → ∞, we found A = 0.4, γ = 2 and B(2) = 30. 
Integrating (7) over the pdf (8), substituting these limiting values 
and using the fitted time scale constant b = 0.5, we obtain the 
unconditional scalar dissipation  
 12

0 038.0 −= tccε  (9) 

The coefficient 0.038 may be compared with the value of 0.06 
inferred by Bilger [12] from the data of Ma and Warhaft [1]. 
 
Conserved Scalar Theory for Chemistry 
Consider the second-order reaction 
 PBA →+  (10) 

Then the chemical source terms for species A, B and P are  
 BAPBA ckcwww −=−==  (11) 

where k is the reaction rate constant. Thus the quantity cA - cB is 
unaffected by reaction and is known as a conserved scalar, and its 
statistics are identical with those already discussed. Other 
conserved scalars can be defined for the system (10), but they are 
all essentially equivalent. 
 
Now if species A is introduced in the upper stream (stream 1) 
with concentration cA,1 and species B is introduced in the lower 
stream with concentration cB,2 (as in [2]), then we can define the 
mixture fraction F for the conserved scalar by 
 ( ) ( )2,1,2, BABBA cccccF ++−=  (12) 



 

with the boundary conditions F = 0 in the lower stream and F = 1 
in the upper stream. Thus, 1-F is equivalent to the normalised 
scalar concentration c/c0 in the Ma and Warhaft experiments [1]. 
 
We see from figure 2 that the conserved scalar results for the rms 
fluctuations are significantly lower than the model predictions 
and the thermal mixing layer results of Ma and Warhaft [1]. Li et 
al. [13] noted that this is at least partly due to an instability in the 
flow and by removing the instability they obtained improved 
agreement. Nevertheless, the reactive scalar results of Bilger et 
al. [2] have been affected by what is effectively excess mixing in 
the middle of the mixing layer. 
 

-3 -2 -1 0 1 2 3
z/σz

0

0.1

0.2

σ
c(z

)/c
0

Ma & Warhaft
Bilger et al.
Model

 
Figure 2. Comparison of model predictions for the cross-wind profile of 
rms concentration fluctuations with the conserved scalar results of Bilger 
et al. [2] at x′/M = 21 and the passive scalar results of Ma & Warhaft [1] 
for x0 = 0. 
 
The conserved scalar concept is useful because in various limits 
and approximations the reactant concentrations cA and cB, and the 
product concentration cP, can be written as functions of the 
mixture fraction. Thus in the limit of very slow reactions, the so-  
called frozen limit, the reactants are unaffected by chemistry, so 
we have 
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At the other extreme of very fast chemistry, reaction is so fast 
that species A and B cannot coexist, so from (12) 
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where the stoichiometric mixture fraction ( )2,1,2, BABs cccF +=  
is obtained by setting cA = cB in (12). 
 
Another useful approximation is the so-called reaction-dominated 
limit, which assumes instantaneous mixing at the source followed 
by reaction for the travel time t from the source [2]. For F ≠ Fs  
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and for F = Fs 
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where the Damkohler number ND = k(cA,1+cB,2)M/U and M is the 
grid mesh length. 
 
Finally, Klimenko [14] and independently Bilger [12] have 
developed the conditional moment closure (CMC) theory for the 
mean concentration of the reactive species conditional on the 
conserved scalar mixture fraction, FcFQ A |)(ˆ =  for example. 
Bilger [12] shows that for the reacting mixing layer the CMC 
equation can be approximated by 
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where ( )2,1,
ˆ

BA ccQQ +=  and ζ = NDx′/M. Bilger [12] modelled 

the conditional dissipation in (17) as 103.0| −== tF FF εε , 
which is close to (9). We solved for Q as a function of ζ and F 
using the conditional scalar dissipation (7) and also, for 
comparison, its unconditional approximation (9). We represented 
the numerical results for Q analytically by fitting to them the 
RDL formulae (16) and (17) with a retarded reaction progress 
variable ζ′(ζ ). For 0| =FFε , the CMC approximation reduces 
to the reaction-dominated limit.  
 
Now using (13) - (17) we are able to calculate the reactant 
concentrations (or in the case of CMC, the conditional mean 
concentration) along a trajectory from the conserved scalar 
concentration, and can then calculate statistics of these reactant 
concentrations as a function of cross-stream location and travel 
time simply by averaging over trajectories. 
 
Results for reactive scalar statistics 
In figure 3 we compare model predictions for the mean reactant 
concentration with the results of Bilger et al. [2] for Fs = 0.5, 
ND = 0.42 (corrected by a factor of 2  after Li et al. [13]) and 
Ut/M = 21. Note that reaction depletes the mean concentration 
more strongly in the low-concentration side of the mixing layer; 
i.e. in the lower layer for species A and the upper layer for B, so 
the profiles as a whole are shifted towards the high concentration 
side. There is also a greater differentiation between the different 
limits and models on the low-concentration side. As noted by 
Bilger et al. [2], the mean concentration tends to be closer to the 
equilibrium limit than the frozen limit. We see that on the edges 
of the mixing layer the CMC calculation is in excellent 
agreement with the experimental results, but in the middle of the 
layer the experimental results lie close to the equilibrium limit.  
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Figure 3. Comparison of model mean reactant concentrations as a 
function of position across the plume with experimental results [2] for 
Fs = 0.5, ND = 0.42 and Ut/M = 21. Note that the plot for species B has 
been inverted in space.  
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Figure 4. Comparison of model rms reactant concentrations as a function 
of position across the plume with experimental results [2] for Fs = 0.5, 
ND = 0.42 and Ut/M = 21. Note that the plot for species B has been 
inverted in space.  
 
The asymmetry about the centreline due to chemical reaction is 
even more obvious for rms fluctuations in reactant concentration 
as shown in figure 4, where the peak is clearly shifted towards 
the high-concentration side. Notice also that reaction reduces the 
fluctuations on the low-concentration side and increases them on 
the high-concentration side, as reflected by the trend from the 
frozen to the equilibrium results. Again the CMC model is in 
reasonable agreement at the edges of the mixing layer, but the 
experimental values are clearly lower than any of the theoretical 
estimates in the middle of the layer.  
 
The discrepancy between the experimental results and the model 
predictions may be due to the effects of the flow instability 
reported by Li et al. [13]. The increased mixing due to this 
instability would tend to reduce the mean reactant concentration 
because the reactants are brought into closer contact. It would 
also have a direct effect in reducing fluctuations in the reactant 
concentrations. 
 
For the case studied here, the CMC results using (7) and (9) are 
virtually indistinguishable and have not been plotted separately. 
This is not surprising because the unconditional value is within 
30% of the conditional value for 0.25 < F < 0.75, and values of 
the mixture fraction outside this range are rare, as shown by the 
pdf (8). 
 
Conclusions 
We have used a Lagrangian stochastic trajectory model coupled 
with the IECM mixing model to calculate concentration statistics 
in a scalar mixing layer in decaying grid turbulence. We obtained 
good agreement with the results of Ma and Warhaft using a 

mixing time scale tm = 0.5t. We also used conserved scalar theory 
in various limits and approximations to calculate reactive scalar 
statistics, and compared our predictions with the results of Bilger 
et al. [2]. As has been previously documented [13], a flow 
instability in these experiments caused enhanced mixing in the 
middle of the mixing layer (compared with the thermal mixing 
layer). It seems likely that this enhanced mixing causes a 
significant reduction in both the mean and rms reactant 
concentrations in the middle of the mixing layer. Under the 
conditions studied here (Fs = 0.5 and ND = 0.42) the modelling 
results show that replacing the conditional scalar dissipation by 
the unconditional dissipation in the CMC theory is an excellent 
approximation. 
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