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Abstract

We consider the decay and subsequent instability of the fully
developed flow within a pipe of circular cross section when the
pipe is suddenly closed.

Introduction

The behaviour of the flow within a suddenly blocked pipe has
important applications across a wide range of disciplines. Two
such examples are the so called water-hammer effect which oc-
curs when a valve is suddenly closed in a pipe and the rhythmic
opening and closure of the aortic valve and the pulmonic valve
in the heart during ventricular ejection. In both applications an
unsteady flow develops which typically exhibits a transient tur-
bulent state (see, for example, Refs. [3] and [13]).

It was the physiological applications that led Wienbaum &
Parker [16] to first consider the problem of the decay of the flow
in a suddenly blocked channel or pipe. They gave the problem
its correct mathematical formulation and employed an approxi-
mate technique based upon the Pohlhausen method to describe
the flow. This work allowed them to demonstrate that the de-
caying channel flow develops points of inflection thus suggest-
ing that the flow would be susceptible to wave-like instabilities.
The stability of the flow was subsequently considered by Hall &
Parker [7] who employed a WKBJ style approximation, based
upon the assumption of large flow Reynolds number, to derive a
quasi-steady Orr-Sommerfeld equation describing the flow sta-
bility.

The theoretical result that the decelerating flow in a suddenly
blocked pipe is unstable to wave-like disturbances is in qualita-
tive agreement with in vivo measurements of turbulence lev-
els in the ascending aorta (for example Ref. [13]). Hall &
Parker [7] demonstrated that the decaying flow within a sud-
denly blocked channel is unstable, due to the inflectional nature
of the stream-wise velocity profiles, for Reynolds numbers as
low as O(102). Some care must be taken in interpreting these
results, since the quasi-steady approximation they employed re-
quires the flow Reynolds number to be simultaneously large (for
the asymptotic approximation to be valid) and finite (to justify
retaining viscous terms in the resulting Orr-Sommerfeld equa-
tion).

One of the drivers of the renewed interest in the behaviour of
the flow in a suddenly blocked pipe occurs in the water indus-
try where considerable attention has been given to the problem
of detecting leaks in pipeline systems using inverse transient
techniques, see Ref. [10]. For this technique to be fully imple-
mented it is necessary to be able to differentiate between damp-
ing due to leaks and damping due to unsteady friction resulting
from the (possibly) turbulent flow within the pipeline. Current
models for the unsteady friction within pipes, such as that of
Vardy & Brown [15], are largely empirical and typically under-
predict the amplitude and the phase of the pressure response
within the pipeline. Recent work by Lambert et al. [9] suggests
that this lack of agreement between theory and experiment may
be largely due to the empirical nature of the friction models
used. Their results highlight the need for an improved under-

standing of the flow within the unsteady boundary layer, both
laminar and turbulent.

It is the aim of this paper to quantify the stability properties of
the decaying flow in a suddenly blocked pipe.

Formulation

Consider the pressure driven flow within a cylindrical pipe of
non-dimensional radius r = 1 which is suddenly blocked at
x = 0 at time t = 0, where (r,θ,x) are the usual cylindrical
polar coordinates and (v,w,u) is the corresponding velocity
field. Prior to blockage the flow is assumed to be fully de-
veloped, laminar, Poiseuille flow with axial velocity given by
u(r,x) = 1− r2.

As noted by Wienbaum & Parker [16], the pressure wave which
results from the sudden valve closure acts to freeze the vorticity
within the flow in the state which existed prior to the closure.
Thus, provided the Mach number of the flow is small (which
it invariably is for most pipeline applications), immediately af-
ter the passage of the pressure wave the vorticity distribution
within the flow is the same as it was before the closure. Solving
the vorticity equation demonstrates that immediately after the
blockage, roughly two pipe radii downstream of the blockage,
the flow is uni-directional and given by

u0(r,x) =
1
2
− r2 (t = 0). (1)

Following the blockage, the flow develops on the viscous dif-
fusion time-scale τ = Re−1t = O(1), where Re is the flow
Reynolds number.

Assuming then that the flow within the blocked pipe is now uni-
directional, we write (v,w,u) = (0,0,U0(r,τ)). Substitution of
this expression into the full Navier-Stokes equations yields

∂U0

∂τ
=

∂2U0

∂r2 +
1
r

∂U0

∂r
+φ′(τ), (2a)

which must be solved subject to

U0(r,0) =
1
2
− r2, 0 < r < 1, (2b)

U0(1,τ) = 0 τ > 0. (2c)

In (2a) the term φ′(τ) denotes the unsteady axial pressure gra-
dient; this must be determined as part of the solution process.
In order to do this we impose the condition that the integrated
volume flux across any cross-section must vanish. Thus

1
Z

0

rU0(r,τ)dr = 0. (2d)

The system (2) can be solved be solved in two ways. The first
involves taking the Laplace transform in τ, solving the result-
ing ordinary differential equation and then taking the inverse
Laplace transform to obtain the velocity field U0(r,τ). Due
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Figure 1: Plot of streamwise velocity U0(r,τ) versus r for times
τ as labelled.

to its complexity the inverse Laplace transform must be cal-
culated numerically. The second approach involves discretizing
the equation (2a), in both space and time, and solving the dis-
cretized system numerically. It is readily shown (see Refs. [8],
[16]) that the streamwise pressure gradient term has a singular-
ity at time t = 0 in the form φ′(τ) = O(τ−1/2) as τ → 0 (this is
a simple consequence of the impulsive nature of the blockage).
For this reason a simple marching-in-time scheme, with initial
conditions imposed at τ = 0, is not suitable for solving (2). To
use such a scheme an accurate small-time solution must be de-
veloped. Details of this can be found in Jewell & Denier [8].
For our purposes it is sufficient to note that, for small τ, we can
write

φ(τ) =− 2√
π

τ1/2 +
5
2

τ+O(τ3/2);

the velocity field U0(r,τ) (0 < τ� 1) can be written in the form
of an infinite power series in powers of τ1/2 (details can be
found in Ref. [8]).

This small τ solution was taken as the starting-point for a Crank-
Nicolson finite-difference marching scheme as follows. Given
U0(r,τ) and φ′(τ) at time τ0 we use the value of φ′(τ0) as a
guess for the value of φ′(τ1) (where τ1 = τ0 + ∆τ). The inho-
mogeneous discretized equations are then solved, subject to the
boundary condition (2b) to give Ũ0(r,τ1); this will be the “cor-
rect” value if and only if the flux condition (2d) is satisfied. In
general this will not be the case thus allowing us to set-up an
iteration scheme, based upon the flux condition, which can be
used to update φ′(τ1). We chose to employ Newton iteration for
this task.

The results of our calculations are presented in figure 1 which
show the decay of the streamwise velocity. For small times τ we

observe the rapid change as the flow adjusts from the inviscid
slip condition to the no-slip boundary condition on r = 1.

Linear stability of the flow

To consider the stability of the flow we proceed in two ways.
Firstly we undertake a a classical linear stability analysis which
invokes the quasi-steady approximation that the basic flow does
not vary significantly over the O(t) time scale characteristic of
Orr-Sommerfeld modes. We then relax the quasi-steady as-
sumption thus taking into account the O(τ) evolution of the ba-
sic flow and focus our attention on transient pseudomodes, that
is, flow perturbations which are capable of significant transient
growth.

Normal mode analysis

Here we look for flow perturbations in the form

(u, p) = (0,0,U0(r,τ), p)

+ ε(Ur(r),Uθ(r),Ux(r),P(r))ei[α(x−ct)+kθ], (3)

where Ux,Ur and Uθ are the axial, radial and circumferential
velocity components respectively, and c denotes a complex-
valued wave-speed. The diffusion time scale τ is treated as
a parameter (the quasi-steady approximation), along with the
Reynolds number Re, the axial wavenumber α and the az-
imuthal wavenumber k (k = 0,1,2, . . . ). The case k = 0 cor-
responds to two-dimensional perturbations, that is Uθ = 0. The
governing equations for (U(r),P(r)) are

iα(U0− c)Ux =−iαP−U ′
0Ur +Re−1LUx, (4a)

iα(U0− c)Ur =−P′+Re−1
[

LUr− r−2Ur−2ikr−2Uθ

]

,

(4b)

iα(U0− c)Uθ =−ikr−1P+Re−1
[

LUθ− r−2Uθ +2ikr−2Ur

]

,

(4c)

0 = iαUx +

(

∂Ur

∂r
+ r−1Ur

)

+ ikr−1Uθ. (4d)

where the operator L is given by

L =
∂2

∂r2 +
1
r

∂
∂r
− (α2 + k2r−2).

The full system (4a)–(4d) is to be solved subject to the no-slip
condition U(1) = 0. Boundary conditions at r = 0 (adapted
from [6]) are

k = 0: Ur = 0, U ′
x = 0, P′ = 0. (4e)

k = 1: Ux = 0, P = 0, U ′
r = 0, Uc = iαUr. (4f)

k > 1: U = 0, P = 0. (4g)

When discretized, system (4) reduces to a generalized eigen-
value problem for the complex wavespeed

A(U,P)T = cB(U,P)T . (5)

Discretization was performed using an order-N Chebyshev
pseudospectral scheme, yielding an eigenvalue problem of ap-
proximate size 3N or 4N. The order Nmin required to resolve
the first eigenvalue to five decimal places was found to range
from fifteen to twenty five, depending on choice of parameters
(provided that τ & 0.001). Furthermore, resolution of the ten
leading eigenvalues was generally possible at N = Nmin +10.

The results from our calculations are given in figure 2. We note
that the flow is unconditionally stable to axisymmetric modes
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Figure 2: Plots of (a) Neutral-stability curves for blocked-pipe
flow and (b) the corresponding critical Reynolds number for az-
imuthal wavenumbers k = 1,2,3. The solid line corresponds to
the neutral-stability curves.

(k = 0). Neutral curves, for k = 1, are presented in figure 2a.
From this figure we clearly observe the variation of the critical
Reynolds number with time τ. In figure 2b we plot the critical
Reynolds number versus τ for k = 1,2,3. The most unstable
mode corresponds to k = 1 and has a minimum critical Reynolds
number of Rec ≈ 440 which occurs at a time τ = 0.02. These
results are in qualitative agreement with those of Ref. [5].

It has long been known that eigenmodes predict long-term
rather than short-term behaviour. Whether this is a reliable
guide to short-term behaviour depends on whether the eigen-
modes are orthogonal and non-degenerate: where this is not the
case, transient growth may be possible even if all individual
eigenmodes decay and we now turn our attention to this prob-
lem.

Transient growth analysis

It is only in recent years that it has been recognised that the
eigenmodes of some flows are not orthogonal. This is indeed
the case for Couette and plane-Poiseuille flows. For these flows
it is possible to describe a linear combination of eigenmodes
which interfere destructively in the early stages, before separat-
ing out to produce significant transient growth in the intermedi-
ate stage (see Refs. [2], [12] and [14]). Eventually, in a purely
linear model, this linear combination decays exponentially in
accordance with classical predictions. This leads to the conjec-
ture that in practice the transient may attain a critical amplitude
beyond which non-linear effects destabilize the flow. This is
supported by the numerical results presented in Refs. [1], [4]
and [14].

There are two basic numerical techniques of linear transient
analysis which are presented Refs. [2], [12] and [14]. We fo-
cus our attention on determining the explicit transient pseudo-
modes. As in classical stability analysis, the pseudomode is
considered to be a flow perturbation arising instantaneously at
some time t = 0. Typically, it attains some amplification factor
g = O(Re), that is gmax ≈ (Re/Re0) where Re0 � Rec, before
decaying exponentially as t → ∞.

The present problem differs in one important respect from Cou-
ette and Poiseuille flows: the basic flow for a blocked pipe is un-
steady. To the extent that the quasi-steady assumption is valid,
the explicit-transient technique is directly applicable. To this
end, we denote the transient response by

ũ(t) ≡ ũ(t,r,x,θ; τ0,Re,α), (6)

where t = 0 and τ = τ0 denote the time of commencement. Let
this transient be approximated by the J leading eigenmodes of
the basic flow at time τ0:

ũ(t) =
J

∑
j=1

γ jũ j(t; τ0,Re,α). (7)

Following Trefethen et al. [14] we define the transient-growth
factor via its energy norm over space as

g(t) =
‖ũ(t)‖
‖ũ0‖

=

(

γ∗R(t)γ
γ∗R0γ

)
1
2

(8)

where R jk(t) = 〈ũ j(t), ũk(t)〉. In order to relax the quasi-steady
assumption we must track the temporal and spatial evolution of
each of the original eigenmodes:

ũ j(t) = exp

[

−
Z t

0
Ã(τ0 +Re−1t ′)dt ′

]

ũ j(0) (9)

where Ã is the matrix evolution operator defined in Jewell &
Denier [8]. The matrix-exponential was evaluated using the
Matlab function expm, together with the formula

ũ j(t) = exp
[

−tÃ(τ̄)
]

ũ j(0), (10)

where Ã(τ̄) is understood to mean Ã is evaluated using the mean
basic flow for τ0 < τ < (τ0 +Re−1t).

We calculate the maximum possible growth g∗(t) at some time
t = t1, obtaining what Trefethen et al. [14] have termed the
Butler-Farrell optimum transient at t = t1. Obtained by setting
∂g/∂γ = 0 at t = t1, the Butler-Farrell transient corresponds to
the dominant eigenmode of the generalized eigenvalue problem

R(t1)γ = λR0γ , with g∗(t1) =
√

λ1(t1). (11)

Results are shown in Figures 3 and 4. Figure 3 shows the func-
tion g∗(t) for a variety of parameter values (Re,τ0) and figure 4
shows gmax ≡max{g∗(t)} as a function of Reynolds number. It
is found that

gmax ≈ (Re/Re0) where Re0 ≈ 120 (Re < 1000). (12)

The quasi-steady estimate gmax(Re,τ0) proves to be reasonably
accurate (provided that Re < Rec(τ0), where Rec(τ0) is the clas-
sical critical value). This is due to the weak dependence of
gmax(Re,τ0) on τ0; it does not demonstrate that the quasi-steady
approximation is intrinsically valid. On the contrary, figure 3c
shows that a given transient persists almost as long as the basic
flow itself, continuing to grow until τ ≈ 0.05; at this time the
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Figure 3: Butler-Farrell transient-growth profile g∗(t1) for α =
1.5. The transient commences at (a) τ0 = 0.001 and (b) τ0 =
0.004 and (c) as for (a) but plotted against τ1 = τ0 +Re−1t1

viscous boundary-layer, which has grown from the pipe-wall
almost fills the whole pipe (see Jewell & Denier [8] for details).

These results suggest that the precise classical value Rec(τ) is of
limited physical significance. Below this limit, transient growth
may be possible. Above it, transition to turbulence may not be
realized – the basic flow may decay too soon to permit much
growth of the dominant eigenmode.

To explore this idea further, we compare our results with those
of Trefethen et al. [14] for Couette and plane-Poiseuille flows
(Figure 4). Couette flow (for which Re0 ≈ 29) is known to tran-
sition to turbulence in the range 350 < Re < 3500; Poiseuille
flow (Re0 ≈ 71) becomes turbulent for 103 < Re < 104. On
this basis we conjecture that transition-to-turbulence is usu-
ally associated with transient growth factors in the range 15
to 50. For the case of a blocked pipe, this corresponds to
1100 . Re . 1800.
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Figure 4: Maximum transient growth gmax ≡ max{g∗}. Cor-
responding results from Couette and plane-Poiseuille flows are
provided for comparison (solid and dashed sections correspond
to transitional and unstable flow, respectively).

Conclusions

We have demonstrated that the flow within a suddenly blocked
pipe is unstable to non-axisymmetric disturbances. The flow
also supports modes which undergo transient growth. Compar-
ison with Couette and plane Poiseuille flow suggests that these
transients may play an important role in the transition process.
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