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The “zeroth law” of turbulence in steady isotropic turbulence
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Abstract

The dimensionless kinetic energy dissipation rateCε is esti-
mated from numerical simulations of statistically stationary
isotropic box turbulence that is slightly compressible. The Tay-
lor microscale Reynolds number(Reλ) range is 20. Reλ . 300
and the statistical stationarity is achieved with a random phase
forcing method. The strong Reλ dependence ofCε abates when
Reλ ≈ 100 after whichCε slowly approaches≈ 0.5, a value
slightly different to previously reported simulations but in good
agreement with experimental results. IfCε is estimated at a spe-
cific time step from the time series of the quantities involved it is
necessary to account for the time lag between energy injection
and energy dissipation. Also, the resulting value can differ from
the ensemble averaged value by up to±30%. This may explain
the spread in results from previously published estimates ofCε.

Introduction

The notion that the mean turbulent kinetic energy dissipation
rateε is finite and independent of viscosityν was originally pro-
posed by G. I. Taylor[1]. Its importance is so recognized now
that it is sometimes referred to as the “zeroth law” of turbulence.
Its existence was assumed by von Kármán and Howarth, Loit-
sianskii and also, significantly, Kolmogorov[2] in establishing
his celebrated similarity hypotheses for the structure of the in-
ertial range of turbulence. Kolmogorov assumed the small scale
structure of turbulence to be locally isotropic in space and lo-
cally stationary in time - which implies the equality of turbulent
kinetic energy injection at the large scales with the rate of turbu-
lent kinetic energy dissipation at the small scales. Although this
view should be strictly applied only to steady turbulence, the
mechanism of the dissipation of turbulent kinetic energy can be
considered the most fundamental aspect of turbulence not only
from a theoretical viewpoint but also from a turbulence mod-
eling viewpoint. Indeed, the mechanism that sets the level of
turbulent dissipation in flows that are unsteady is a difficult, if
not intractable, aspect of turbulence modeling.

The rate of turbulent kinetic energy dissipation is determined
by the rate of energy passed from the large-scale eddies to the
next smaller scale eddies via a forward cascade until the energy
is eventually dissipated by viscosity. Thus,Cε defined as,

Cε = εL/u′3, (1)

(here,L andu′ are characteristic large length and velocity scales
respectively) should be independent of the Reynolds number
and of order unity. An increase in Reynolds number should
only result in an increase in the typical wave number where dis-
sipation takes place. In the past few years there have been a
number of numerical (see Ref. [3] and references therein) and

experimental (see Refs. [4, 5] for recent results) efforts to de-
termine the value ofCε and its dependence on the Reynolds
number. Perhaps the most convincing of these are the numeri-
cal attempts since there is no re-course to one-dimensional sur-
rogacy as there is for experiments. Notwithstanding this fact,
there is good agreement, both numerically and experimentally,
with the long held view thatCε is ∼ O(1) when the Reynolds
number is sufficiently high. The collection of isotropic sim-
ulation results forCε shown in Ref. [3] indicates that “high
enough” Reynolds number “appears” to be Reλ ∼ O(100).
Here, Reλ(= u′2[15/νε]1/2) is the Taylor microscale Reynolds
number. At higher Reλ e.g. Reλ & 300, small Reλ dependen-
cies forCε, such as that proposed by Lohse[6] cannot be ruled
out. Measuring such Reλ dependencies, either numerically or
experimentally, will be close to impossible.

One unresolved issue is that raised by Sreenivasan[7]. After
assembling all the then known experimental decaying grid tur-
bulence data[8] and numerical data for both decaying and sta-
tionary isotropic turbulence he concludes that “the asymptotic
value (ofCε) might depend on the nature of large-scale forc-
ing, or, perhaps, on the structure of the large scale.” He also
demonstrates[9] in homogeneously sheared flows that the large
structure does influenceCε. However, it might be argued that
these results were obtained at low Reynolds numbers and the is-
sue of a universal asymptotic value forCε could still be consid-
ered open. Alternatively it could be argued that homogeneous
shear flows and the like are strictly unsteady turbulent flows and
the zeroth law, in its simplest guise, should not be expected to
apply to such flows e.g. see Ref. [10]. The possibility of some
characteristics of large-scale turbulence being universal should
not be ruled out. The recent observation that input power fluc-
tuations, when properly re-scaled, appear universal[11] may be
construed to suggest the possibility of universality forCε. The
aim of the present work is to estimateCε from direct numeri-
cal simulations (DNS) of statistically stationary isotropic turbu-
lence and compare with previously reported DNS results (sum-
marized in Fig. 3 of Ref. [3]) and experiments carried out in re-
gions of low(dU/dy≈ dU/dy|max/2) or zero mean shear. The
present DNS scheme differs from methods already reported in
that a high-order finite difference method is used. To our knowl-
edge, these are the first finite difference results forCε. Hence,
it is worthwhile to test if different numerics and forcing at the
large scales result in vastly different values forCε to those al-
ready reported.

Numerical Methods

The data used for estimatingCε are obtained by solving the
Navier Stokes equations for an isothermal fluid with a con-
stant kinematic viscosityν and a constant sound speedcs. In



Run N Reλ Ttot/T ν
(

×104
)

ε
(

×105
)

∆t/tκ L λ u′ τmax/T Cε η kmaxη
A 32 20 31 40 24 0.0190 1.9 1.2 0.071 0.15 1.2 0.128 2.1
B 64 42 30 15 22 0.0150 1.6 0.81 0.078 0.37 0.75 0.063 2.0
C 128 90 11 4.0 24 0.0150 1.3 0.43 0.084 0.62 0.54 0.023 1.5
D 256 92 19 4.0 21 0.0071 1.4 0.45 0.081 0.69 0.53 0.024 3.0
E 256 152 20 1.6 21 0.0110 1.4 0.29 0.084 0.74 0.49 0.012 1.5
F 512 219 7 0.80 25 0.0086 1.3 0.20 0.089 0.67 0.47 0.007 1.7

Table 1: Examples of DNS parameters and average turbulence characteristics.N is the number of grid points in each of the Cartesian
directions, Reλ is the Taylor microscale Reynolds number≡ u′λ/ν, Ttot is the total run time after the run became statistically stationary,
T is the eddy turnover time≡ L/u′, ∆t is the run time increment,tκ is the Kolmogorov time scale≡ ν1/2ε−1/2, λ is the Taylor
microscale≡ u′

√

15ν/ε, τmax is the average time for the energy cascade from large to small scales, and η is the Kolmogorov length
scale≡ ν3/4ε−1/4.

the numerical simulations the system is forced (stirred) using
random transversal waves. The forcing amplitude is chosen
such that the root mean square Mach number for all runs is be-
tween 0.13 and 0.15 which is not too dissimilar to that found
in the wind-tunnel experiments to be discussed in the next sec-
tion. For these weakly compressible simulations, the energies
of solenoidal and potential components of the flow have a ra-
tio Epot/Esol ≈ 10−4–10−2 for most scales; only towards the
Nyquist frequency (henceforthkmax) does the ratio increase to
about 0.1. It is thus reasonable to assume that compressibility
is irrelevant for the results presented here whilst at the same
time the present results can be considered more comparable
and relevant to experimental wind tunnel flows than the per-
fectly incompressible simulations published so far. The code
has been validated in previous turbulence studies[12, 13] and
the reader is especially referred to Ref.[14] for more informa-
tion. The simulations are carried out in periodic boxes with
resolutions in the range of 323−5123 grid points. The box size
is Lx = Ly = Lz = 2π, which discretizes the wave numbers in
units of 1. The viscosityν is chosen such that the maximum re-
solved wave numberkmax is always greater than 1.5/η, where
η = (ν3/ε)1/4 is the Kolmogorov length scale. To be consistent
with previously published DNS studies, the total kinetic energy
E is defined as,

Etot =
1
2

〈

uuu2
〉

=
3
2

u′2 =
∫ kmax

0
E(k)dk, (2)

the integral length scaleL is defined,

L =
π

2u′2

∫ kmax

0
k−1E(k)dk, (3)

and the average turbulent energy dissipation rate is defined as

ε = 2ν
∫ kmax

0
k2E(k)dk. (4)

Angular brackets denote averaging over the box volume. After
each run has become statistically stationary (typically 1-2 eddy
turnoversT ≡ L/u′) the average statistics are estimated for the
remaining total run time. Table 1 summarizes the average statis-
tics for each run. Comparing Runs C and D in Table 1 indicates
that there is little difference in the averageCε for simulations
resolved up toηkmax = 1.5 from ηkmax = 3.

Results

Numerical results

In this section results for the higher order finite difference nu-
merical simulations are presented. The simulations began with
N = 323 and each subsequent larger box size began with a ve-
locity field interpolated from the previous box size. Figures
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Figure 1: Example time series from Run E,N = 2563, average
Reλ ≈ 152. (a),u′; (b), ε; (c), L; (d), Reλ. Here, the eddy
turnover timeT = L/u′. The up arrows↑ indicate correlated
bursts ofu′ andε.

1(a)-(d) show example time series from Run E(N = 2563) for
the fluctuating velocityu, the fluctuating integral length scale
L, the fluctuating kinetic energy dissipation rateε and the fluc-
tuating Reynolds number Reλ respectively. Initially, the turbu-
lence takes a short amount of time to reach a statistically sta-
tionary state - a consequence of stabilizing the new run from
the previously converged run. The fluctuating quantities shown
in Figures 1(a)-(d) are not unlike those encountered in a wind
tunnel. Indeed, Fig. 1(a) could easily be mistaken for a hot-
wire trace of a turbulent flow. This is in stark contrast to some
pseudo-spectral methods that use negative viscosity to maintain
a constant energy level e.g. Ref. [3].

Given that the statistics are fluctuating, although they are statis-
tically stationary, it is tempting to plot the instantaneousCε as
a function of Reλ. Figure 2 showsCε calculated in such a way.
The Reλ dependent trends are obviously not as expected. How-



ever, it is worth noting the apparent range forCε when Reλ & 50
is ≈ 0.3−0.7 which is the range of previously published DNS
results. This may explain the scatter in previously published
DNS results ifCε is calculated from a subjective choice ofε,L
andu′ at a single time step e.g. as in Ref. [3]. The reason for the
incorrect Reλ dependence forCε can be gleaned from Figs. 1(a)
and (b). Figure 1(a) shows that an intense burst in turbulent
kinetic energyu2 (an example is noted by the arrow) can be
observed some maximum time lagτmax later in the turbulent
kinetic energy dissipation rate [Figure 1(b), again noted by an
arrow]. By noting that there is a strong correlation between in-
tense events ofu2 and L on the one hand andε on the other
hand it is possible to estimateτmax from the maximum in the
correlation betweenu′3/L andε by

ρu′3/L,ε(τ) =
[u′3(t)/L(t)] [ε(t + τ)]

u′3(t)/L(t) ε(t + τ)
. (5)

With this done for all runs it is possible to shift the time series of
ε(t) for each run by its respectiveτmax and correctly calculate
the instantaneous magnitude ofCε e.g. Fig. 3. Figure 4 shows
the newly calculated Reλ dependence ofCε using the correct
time lag τmax for each of the runs. A number of comments
can be made. Firstly, the dimensionless dissipation rateCε ap-
pears to asymptote when Reλ & 100. The asymptotic magnitude
Cε ≈ 0.5 is in good agreement with the consensus DNS results
published so far i.e.Cε ≈ 0.4 to 0.5 (see Ref. [3] and references
therein). Having said this and given the present demonstration
that it is incorrect to estimateCε from a single time snap shot it
would be interesting to recalculate previously published results
based on subjective choices of the quantities involved for esti-
matingCε by using the entire time series. Lastly, the present
results verify the use of a high-order finite difference scheme
and also prove that the zeroth law applies to slightly compress-
ible turbulence.

0 50 100 150 200 250 300
Reλ

0.0

0.5

1.0

1.5

2.0

2.5

C
ε

Figure 2: Incorrectly estimatedCε as a function of Reλ. +,
Run A; ▽, Run B;×, Run C;�, Run D;⋄, Run E;△, Run F.
Ensemble averages can be found in (Table 1).

Experimental results revisited

Results from experiments originally published in Refs. [4, 5],
are updated here with more data within the range 170.
Reλ . 1210. Detailed experimental conditions can be found in
Refs. [4, 5] and need not be repeated here. The main group
of measurements are from a geometry called a NORMAN grid
which generates a decaying wake flow. The geometry is com-
posed of a perforated plate superimposed over a bi-plane grid of

square rods. The flow cannot be classed as freely decaying as
the extent of the wind tunnel cross section (1.8× 2.7 m2) is ap-
proximately 7× 11 L2. For all the flows presented in Ref. [4],
signals of the fluctuating longitudinal velocityu are acquired,
for the most part, on the mean shear profile centerline. For
the NORMAN grid, some data is also obtained slightly off the
center-line at a transverse distance of one mesh height where
dU/dy≈ dU/dy|max/2.
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Figure 3: Example of the offset time series for Run E (τ+
max≈

0.74),N = 2563, average Reλ ≈ 150. Note that the peak events
are now well correlated. ——,u′3/L(t/T); – – –, ε([t −
τmax]/T).

All data are acquired using the constant temperature anemome-
try (CTA) hot-wire technique with a single-wire probe made of
1.27µm diameter Wollaston (Pt-10% Rh) wire. Time lagsτ and
frequenciesf are converted to streamwise distance(≡ τU) and
one-dimensional longitudinal wave numberk1 (≡ 2π f/U)
respectively using Taylor’s hypothesis. The mean dissipation
rateε is estimated assuming isotropy of the velocity derivatives
i.e.ε ≡ εiso = 15ν〈(∂u/∂x)2〉. We estimate〈(∂u/∂x)2〉 from the
average value ofE1D(k1) [the 1-dimensional energy spectrum
of u such thatu2 =

∫ ∞
0 E1D(k1)dk1] and from finite differences

〈(∂u/∂x)2〉 = 〈ui+1 − ui〉
2/(U fs)2. For most of the data, the

worst wire resolution is≈ 2η whereη is the dissipative length

scale≡ ν3/4ε−1/4
iso . The characteristic length-scale of the large-

scale motionsL is Lp and is estimated from the wave number
k1,p at which a peak in the compensated spectrumk1E1D(k1)
occurs i.e.Lp = 1/k1,p.
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Figure 4: Correctly estimatedCε as a function of Reλ. +, Run
A; ▽, Run B;×, Run C;�, Run D; ⋄, Run E;△, Run F. En-
semble averages can be found in (Table 1).



Figure 5 showsCε for the present data. For all of the data, a
value ofCε ≈ 0.5 appears to be the average value. Figure 5 con-
firms thatCε, albeit a one-dimensional surrogate, measured in
a number of different flows is independent of Reλ. It could be
argued that the rate of approach to an asymptotic value depends
on the flow e.g. proximity to initial and boundary conditions.
The asymptotic valueCε ≈ 0.5 is in excellent agreement with
the present DNS results. These experimental results are encour-
aging considering that wind-tunnel turbulence is always rela-
tively young compared to DNS turbulence, e.g. the NORMAN

grid turbulence has only of the order of 6 eddy turnover times
in development by the time it reaches the measurement station.
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Figure 5: Normalized dissipation rateCε for different experi-
mental flows.�, circular disk, 154. Reλ . 188;◦, golf ball,
70 . Reλ . 146;▽, pipe, 70. Reλ . 178; ♦, normal plate,
79. Reλ . 335; △, NORMAN grid N1,152. Reλ . 506;×,
NORMAN grid N2 (slight mean shear,dU/dy≈ dU/dy|max/2),
607. Reλ . 1215,⊲, NORMAN grid N2 (zero mean shear),
388. Reλ . 1120.

Final remarks and conclusions

The present work has revisited the zeroth law of turbulence for
both numerical simulations of statistically stationary isotropic
turbulence and experiments. The numerical simulations are
slightly compressible isotropic turbulence and the statistical sta-
tionarity is achieved with a random phase forcing applied at low
wave numbers. The main result of the numerical simulations is
the demonstration thatCε should only be estimated with ensem-
ble averaged quantities from the entire time series for which the
statistics are stationary. IfCε is to be estimated at each time
snap shot it is necessary to correctly account for the time lag
that occurs from the large scale energy injection to the fine scale
energy dissipation. Even after correctly correlating the energy
injection with the energy dissipation, the instantaneous value
of Cε can vary quite considerably (e.g.±30%) over the extent
of the simulation. Such a variation may account for the scat-
ter in magnitude ofCε in previously published results. Both
the present numerical and experimental results suggest that the
asymptotic value forCε is ≈ 0.5. In light of this, the previously
held view that the asymptotic value ofCε may be dependent on
the large scale energy injection could be suspect.
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