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Abstract 
Spin-up flows of an incompressible homogeneous fluid have 
been reviewed. Characteristics of spin-up are followed by a 
summary of  well-established previous papers along the orders : 
linear spin-up, weakly non-linear spin-up and non-linear spin-up. 
Discussions are given to open problems from previous analytic 
theories as comparing with full numerical solutions for Navier-
Stokes equation.  
 
Introduction  
 Spin-up refers to the transient adjustment process of a 
confined fluid when the rotation rate of the container undergoes a 
change. Specifically, consider an incompressible viscous fluid 
which fills a closed circular cylindrical container [radius R , 

height H , aspect ratio ].  At the initial state, both 
the fluid and the cylinder are in rigid-body rotation about the 

longitudinal axis (z-axis) at rotation rate Ω . At time 

)1(~/ ORH

i 0=t , 
the rotation rate of the cylinder is increased abruptly to 

. The transient motion of the fluid, in response to 
this abrupt alteration of the rotation rate of the container, 
constitutes the spin-up. For the majority of geophysical and 
technological applications, the flow is characterized by the 
smallness of the Ekman number [ , where 

( +Ωi )∆Ω≡Ω f

E 2/ν HfΩ≡ ν  is the 

kinematic viscosity of fluid].  The condition E  leads to a 
boundary-layer-type global flow field, which consists of the 
inviscid interior, the Ekman and Stewartson boundary layers 
close to the solid walls of the container. 
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 The pioneering treatise of Greenspan and Howard[11] 
considered the linear spin-up problem in which the Rossby 
number fΩ∆Ω= /ε  is small. By undertaking detailed 
theoretical analyses, it was shown that spin-up is substantially 
accomplished over the spin-up timescale , which is an 

order-of-magnitude smaller than the diffusive timescale . 
The main ingredients of the adjustment process are the inviscid-
boundary layer interactions, together with the angular momentum 
conservation in the inviscid interior. The essential flow character 
has since been verified by numerical simulations and laboratory 
experiments [see review articles by Benton & Clark [4], Duck & 
Foster [7]]. For definitiveness, the cylinder is oriented such that 
the central longitudinal axis is aligned in the vertical (z) axis, and 
the horizontal direction refers to the radial (

12/1 −− Ω fE
11 −− Ω fE

r ) and azimuthal 
(θ ) directions. 
 Efforts were made to extend the linear problem formulation 
of Greenspan and Howard [11] to nonlinear settings. For ε  small, 
but finite, Greenspan and Weinbaum [12] carried out series 
expansions using ε  to include higher-order terms, which 
rendered a weakly nonlinear theory. Wedemeyer [33], in a 
departure from the approach of Greenspan and Weinbaum [12], 
delineated the character of spin-up flow from the initiate state of 

rest, i.e., ,0=Ωi  0.1=ε . When the container starts rotating 
from rest, Wedemeyer’s solution demonstrated the existence of 
the radially-propagated velocity shear front. The interior inviscid 
fluid at smaller (larger) radii than the shear front moves toward 
(away from) the horizontal boundary layers. Venezian [28,29]  
generalized the analysis by Wedemeyer to the range 

.0.10 <<< ε  It is important to point out the difficulties 
associated with the above-stated flow models. The theory of 
Greenspan & Weinbaum [12] does not recover the nonlinear flow 
of Wedemeyer in the limit 0.1→ε . Similarly, the solutions of 
Wedemeyer and Venezian do not reproduce completely the linear 
results of Greenspan & Howard as 0→ε . These are indicative 
of the challenges ahead in unifying the linear and nonlinear 
solutions. 
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fref Ω=Ω fΩ−i = )1( ε

if Ω+=Ω )1( ε

 In 1970’s and 1980’s, numerical solutions to the full Navier-
Stokes equations were obtained  [16, 18, 32]. These endeavors 
verified the global flow field predicted by the previous theoretical 
studies. Further extensions were made by numerical simulations 
to explore spin-up with a free surface [5, 20, 21], turbulent 
flows[6], in a geostrophic flow [21], to name a few. In 1990’s, 
different aspects of spin-up, somewhat modified from the 
classical models, were investigated. Examples include spin-up in 
a non-axisymmetric container [14, 26]. Also, spin-up flows were 
delineated when the shapes of the solid walls of the container 
were deformed. In summary, these are representative of the 
efforts to tackle more realistic situations. 
 In the present review, spin-up flows of an incompressible 
fluid will be dealt with. Spin-up of a stratified fluid and/or a 
compressible fluid is a separate topic, and a considerable body of 
research has been accumulated [2, 15, 17, 25, 30]. 
  The longstanding problem areas in classical spin-up research 
may be summarized: 
(a) Nonlinear Ekman compatibility condition [19, 34], 
(b) Unifying the prediction of linear and nonlinear flow models 
[12, 28, 29], 
(c)  On the viscous effects near the cylindrical sidewall [3, 19]. 
 
General Problem Formulation 
  As stated previously, at the initial state, the rotation rate of 
the fluid and the cylindrical container is Ω , and the rotation rate 
of the cylinder is increased instantaneously to  [see figure 1]. 

The Rossby number, 
fΩ

, where if Ω−Ω=∆Ω , is a 

measure of nonlinearity. Here, the reference rotation rate, refΩ , 

is either  or . For the nonlinear spin-up, it is convenient to 

set , and Ω , as done in [28, 33]. In the 

case of a linear problem, it is customary to select iref Ω=Ω , 

, as in [11, 12]. In the present paper, fref Ω=Ω , 
unless otherwise noted. 
  Nondimensionalization is made of the physical quantities of 
interest: 
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Horizontal Boundary Layers 

  The horizontal boundary layer, often termed the Ekman 
layer, forms near the (horizontal) endwall disks of the container. 
The fluid in this layer is propelled radially-outward due to the 
increased rotation rate ( ∆Ω+Ωi ). This, in turn, causes suction 
in the axial direction of the inviscid interior fluid, which is 
known as the Ekman pumping. The crux of the argument is that, 
by way of the Ekman pumping, the rotating disk exerts control of 
the meridional (secondary) flow. The thickness of Ekman layer is 
scaled O  as can be inferred from the governing equations. ),( 2/1E

H
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refΩ
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refΩ
=
ρ

, 

 
in which superscript * represents nondimensional quantities, t  
time,  velocity vector in the (radial, azimuthal, 
axial) coordinate, 

( ),,( wvuV ≡
r

)
ρ fluid density, and  pressure. p

  The governing time-dependent axisymmetric Navier-Stokes 
equations, in nondimensional form, are straightforward, after 
dropping *: 

 
Vertical Boundary Layer 

  The horizontal-propelled fluid flux in the Ekman layer, after 
reaching the vertical sidewall, is carried vertically along the 
cylindrical sidewall. Obviously, in order to meet the no-slip 
condition at the sidewall, a boundary layer is called for. This 
vertical boundary layer, which is termed the Stewartson layer,  is 
to satisfy the no-slip condition for both the azimuthal and vertical 
directions. It has been established that the vertical layer consists 
of a double-layer structure, i.e.,  -layer for the azimuthal 

flow, and O -layer for the vertical flow. It should be 
mentioned that, in linear spin-up, the vertical boundary layer is 
less important in controlling the interior flow. However, in 
nonlinear spin-up, the influence of vertical layer is not 
insignificant in the determination of the interior fluid motion [1, 
13]. 
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In the above, the Ekman number . 2/ HE refΩ≡ν
  The associated initial and boundary conditions are stated:  
 Inviscid Interior Region 

0)1( ==−−= wrvu ε  at ;       (4a) 0=t  For 1<<E , the thicknesses of the above-stated boundary 
layers are thin and the bulk of the flow domain is essentially 
inviscid. In this region, the principal force balance is between the 
pressure gradient and Coriolis force. Also, the radial and 
azimuthal velocities are substantially uniform in the axial 
direction, i.e., the Taylor-Proudman column is maintained 
[8,9,10]. Thus, by treating the axial variations of flow properly, 
there is a possibility that the  (  dependent three-
dimensional problem can be reformulated as a (  dependent 
two-dimensional problem in the inviscid region. 
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Inner inviscid region 

 Linear Spin-up  
Consideration is given to the transient flow when the 

rotation rate of the cylinder changes abruptly from iΩ  to 
[ ]if Ω+≡Ω )1( ε . The problem is linearized under the assumption 

that the Rossby number 1<<ε . In the original treatise of 
Greenspan and Howard [11], the governing equations were 
linearized under 1,1 <<<< εE , and an analytical solution was 
secured by means of the Laplace transform. It should be pointed 
out that, in Greenspan & Howard [11], the reference rotation rate 
of the problem was chosen to be , not . iΩ fΩ

 
 
 
 
 

   In a short duration t  after the impulsive start-up 

of the cylinder, the Ekman boundary layer of thickness O  
is formed near the endwall disk of the cylinder. A complete 
mathematical solution is available for the linear Ekman layer, and 
the scales are u . Also, the axial 
variations of (  are well-known spiral structure, as 
demonstrated in [10]. 

)(~ 1−ΩiO

~),(~ wOv ε

)( 2/1E

)(),(~ 2/1EOO εε
),vu

 
 
         R                    Stewartson layer 

  
 

Figure 1. Coordinates and flow regime in the meridional plane 
 
Flow Regime  

By inspecting the governing equations, the fact 1<<E  
leads to the assertion that the overall flow field is of boundary-
layer-type. It is advantageous to depict the character of the 
individual flow region [see figure 1]. 

 In the Ekman layer, the mass flux O  of fluid is 
propelled radially outward, this sucks in the fluid in the inviscid 
interior. This creates an axial flow, w , which is 
termed the Ekman pumping, toward the disk. In the inviscid 
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interior, a concomitant radial flow, u , is induced. 
Therefore, in the inviscid interior, in order to satisfy angular 
momentum conservation, the angular velocity increases by way of 
vortex stretching, i.e., the spin-up process takes place. The bulk of 
interior fluid undergoes the spin-up process, and, therefore, the 
overall adjustment process is substantially accomplished over the 
spin-up timescale O , not over the diffusion time scale 
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   The radial distance ( ) that a fluid parcel has travelled 
over the spin-up process is very small, O . This can be inferred 
from the fact that the distance is the product of the radial velocity 
scale  and the spin-up time scale . ( 2/1EO ε )2/

  The time-dependent velocity fields over the spin-up time scale (in 
the inertial frame) are described approximately  [11]: 
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In which Ψ  denotes the meridional stream function 
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Figure 2. Comparison of the experiment results 
( ) with the analytical results of  
[11],                   , experimental data [ 31 ],                 , theory 
[eq.(3.18) of [11]],                      , approximate solution [eq.( 5 )],  
( printed from [ 31 ]). 
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The theoretical depiction of linear spin-up has since been 

validated by a multiple scaling analysis  [28]  as well as 
experiments [32] and numerical simulation  [15] [see,  see figure 
2]. 

It is to be noted that the spin-up theory of Greenspan & 
Howard was developed under the assumption of two infinite 
disks. This also reinforces the observation that the role of the 

cylindrical sidewall on the spin-up of interior fluid is 
insignificant. As remarked previously, the distance that a fluid 
percel moves in the linear spin-up is , which is much smaller 

than the thickness of vertical sidewall boundary layer O , 

i.e., ). It implies that over the duration of 
spin-up, the fluid originating in the sidewall layer stays in this 
layer; the influence of the sidewall boundary layer is meager on 
the interior fluid. For the present closed container, however, the 
vertical boundary layer exists, and the structure of this layer has 
been a subject of another investigations [1, 14]. 

d
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 Weakly Non-linear Spin-up  
 For ε  small, but finite, Greenspan & Weinbaum [12] 
devised a nonlinear model from the afore-described linear model. 
They expressed the flow variable by series expansions of the 
Rossby number ε . In the course of analysis, due to the presence 
of the secular terms, the strained coordinate method by Poincare 
and Lighthill  was introduced. Due to the complication in the 
analysis, expansions were obtained up to the second-order, i.e., 

. The result for the azimuthal velocity is shown : )( 2εO
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This weakly nonlinear model of Greenspan & Weinbaum  

was shown to be consistent with the experiments in the range 
5.0<ε . 

Specifically, two issues are to be stressed: 
 
(1) Because of the nonlinear effect, in comparison to the linear 

theory, the time to reach the final state becomes shorter 
(longer) in spin-up (spin-down). Since the theory neglects the 
higher-order terms, it is not clear if the same conclusion is 
applicable when )1(~ Oε . However, the later experiments 
and computations seem to be in support of the qualitative 
validity of the theory up to )1(~ Oε  [34]. It will be a 
challenge to supplement the theory to produce a more 
versatile analytical model [see figure 3]. 

(2) As stated earlier, the theory of Greenspan and Weinbaum  is 
for two infinite disks with no sidewall. Consequently, this 
theory is incapable of predicting the presence of the 
propagating velocity shear front  which is a hallmark of 
nonlinear spin-up in a confined closed container. This is 
perhaps a more serious drawback of the theory  [28, 29]. 

 
Non-linear Spin-up  

 
Wedemeyer  Model ( 0.1=ε ) 
 An elegant theoretical model was put forth by Wedemeyer 
[33] about spin-up from rest ( 0.1=ε ). In rapidly-rotating flow, 
the well-known axial uniformity of horizontal velocities in the 
inviscid interior (Taylor-Proudman column, i.e., 

0// =∂∂=∂∂ zvzu ) is exploited. A simplified equation for v  is 
obtained: 
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Figure 3. Comparisons between theory (       )  of [11] and 
numerical data (     ) , ( printed from [12] ). ,∆
 
 
In order to solve the above equation, a relationship linking  and 

 is necessary. To this end, Wedemeyer made use of the 
numerical result of Rogers & Lance [23]. Furthermore, noting the 
inter-relations between the inviscid interior flow and the Ekman 
layer flow, Wedemeyer made the following assumptions:  

u
v

(a) the boundary layer flow is quasi-steady; 
(b) the finite geometry of the cylinder does not effect the 

boundary layer flux; 
(c) the inerior fluid is in rigid-body rotation. 

Combining the above assumption and the local similarity 
assumption based on the Rogers & Lance  data, Wedemeyer  
arrived at an approximate relationship linking u  and : v
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Substituting eq.(11) into eq.(10) yields 
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Under , dropping the viscous terms in eq.(12) leads to  1<<E
 

  (i) v 0= ,               (13a  zEw 2/12, = ) 

 
for the region ahead of the shear front, i.e.,  τ−≤ aer
 

 (ii) 
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for the region behind the shear front, i.e., r , where 

. 

τ−≥ ae

tE 2/1=τ
 The Wedemeyer solution, Eq. (13a-b), successfully depicts 
much of the prominent flow characteristics. The existence of the 
propagating shear front and the global flow field and other 
nonlinear behavior are captured well in this model. However, 

inconsistencies are discernible as well. For instance, the behavior 
of the Ekman pumping velocity w  in both sides of the front is at 
variance with assumption (i). Also, the adoption of the numerical 
data of Rogers & Lance  poses serious difficulty. According to the 
data of Rogers and Lance, the Ekman pumping takes place from 
the region of small angular velocity to that of large angular 
velocity. However, the Wedemeyer solution shows that, in the 
inviscid region behind the front ( ), the Ekman pumping 
is directed from the disk-region with a higher rotation rate to the 
inviscid-region with a lower rotation rate. These, and others, 
illustrate conflicting assumptions and solutions.  Despite these 
shortcomings, the Wedemeyer solution provides overall flow 
pictures which are shown to be generally compatible with the 
numerical solutions [16, 18, 32]. The inconsistencies of 
Wedemeyer model have been pointed out[3, 16], but little serious 
efforts have been made to improve the fundamental foundation of 
the model. 

τ−≥ aer

 
Extension of the Wedemeyer Model ( 0.10 ≤< ε ) 
 Expanding upon the approaches of Wedemeyer, Venezian 
[28-29] produced an analytical solution for the spin-up from a 
finite rotation rate ( 0≠Ωi ) to another finite rotation rate 
( 0≠Ω f ) for 0.10 ≤< ε : 
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 The theoretical solution of Venezian demonstrates the salient 
nonlinear features for )1(~ Oε , which include the spin-up from 
rest. However, difficulties are encountered as this solution 
attempts to recover the linear spin-up by letting 1<<ε . In 
addition, it is unclear to come up with a physically convincing 
explanation about Wedemeyer’s assertion that the propagating 
shear front represents the propagating of characteristic line. 
 One contribution of Venezian’s model lies in the improved 
treatment of viscous terms in the vicinity of the front. Venezian, 
by a careful analysis of the thin viscous layer in the neighborhood 
of the shear front, gave a description of flow surrounding this 
front: 
 

 ,    (15) 122/14/1 ))()exp(()2(4 −−= ββπη erfcarEv

 in which  
 

1)2exp( 2/1 −= tEη
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, , and 
 being nondimensional radius of the container. 

ηβ 2/122/1222 8/)1)2exp(( EtEra −=

  The analytical solution of Venezian was shown to be 
generally compatible with the full Navier-Stokes numerical 
solutions, as displayed in figure 4. Clearly, the viscous solution 
of Venezian, in comparison to the Wedemeyer inviscid solution, 
is in better agreement with the numerical results. However, the 
discrepancies near the shear front are not in substantial. 
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Figure 4. Time histories of  azimuthal velocity ( ).  
The vertical location is at mid-depth. The radial location is 0.5.  
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Figure 5. Nonlinear Ekman pumping v
pumping velocity at the boundary laye
velocity of the far-field fluid and 
disk wall, (printed from [34 ]). 

WΩ

     , Wedemeyer’s inviscid solution; 
                                      , numerical results [16 ]; 
                                      , LDV measurements; 
                                      , Venezian’s profile [eq.(15)], 
(printed from [ 16 ]). 

                                               
  
 The expansion of the model 
challenging issue. The limitation of t
is pointed out. The success and short
model ( 0.1=ε ) are re-visited. The a
improve this model are discussed. 

The Weidman Model 
 Weidman [34] noted that the linear Ekman pumping 
condition was the source of inconsistencies. From that standpoint, 
Weidman attempted to use a 7th-degree polynomial curve fitting to 
the numerical data of Rogers & Lance [23] [see figure 5].   The classical topic of spin-up is 

future directions are listed.  
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