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Abstract

The use of electric field is a promising technique for separat-
ing stabile water-oil emulsions. Charges induced on the wa-
ter droplets will cause adjacent droplets to align with the field
and attract each other. The present work outlines the efforts to
model the forces that influence the kinematics of droplets ex-
posed to electric field when falling in oil. Mathematical models
for these forces are briefly presented with respect to the im-
plementation in a multi-droplet Lagrangian framework. The
droplet motion is mainly due to buoyancy, drag, film-drainage,
and dipole-dipole forces. Attention is paid to internal circula-
tions, non-ideal dipoles, and the effects of surface tension gra-
dients. Experiments are performed to observe the behavior of
two falling water droplets exposed to an electric field perpen-
dicular to the direction of their motion up to the droplets coales-
cence. The droplet motion is recorded with a high-speed CMOS
camera. The optical observations are compared with the results
from numerical simulations where the governing equations for
the droplet motion are solved by the RK45 Fehlberg method
with step-size control and low tolerances. Results, using differ-
ent models, are compared and discussed in details. Observation
concerning the contribution of the different forces actingon the
water droplets kinemtics is presented.

Introduction

The oil extracted from offshore reservoirs will normally contain
a large and, during the reservoir lifetime, increasing percentage
of water in the oil. When the water-oil mixture is passed through
the pressure relief valve an emulsion with a high percentageof
small water drops is formed. Before the oil is pumped on-shore
or into tankers, it is desirable to extract the water from this emul-
sion. Today the separation tanks are mainly built or operated as
gravity separators with low flow rates and long residence times;
lasting from minutes to tens of minutes. The residence time
mainly depends on the sedimentation velocity of the smallest
drops (e.g.d < 100 µm). Electrostatic fields are to some extent
used to help smaller drops to coalesce in to larger drops thatsed-
iment quicker as presented by Eow et al. [1]. The combination
of an electric field and a moderate turbulent flow is a promising
and compact technique for separating stabile water-oil emul-
sions, see Atten [2]. Charges induced on the water droplets will
cause adjacent droplets to align with the field, attract eachother
and eventually coalesce. The sedimentation velocity increases
proportionally to the square of the diameter, and thereforeone
wishes to get the smallest water droplets to coalesce into larger
droplets. The present work outlines the forces that influence the
kinematics of falling spherical droplets exposed to an electric
field. Mathematical models for these forces are presented and
discussed with respect to the implementation in a multi-droplet
Lagrangian framework. The spherical droplet motion is mainly
due to buoyancy, drag, film-drainage, and dipole-dipole forces.
General and physically meaningful models for these forces are
needed in order to establish simulation models for the behavior
of water-oil emulsion.

In the present work, models for the forces that are believed to
dictate the motion of droplets falling in oil under the influence

of an electric field are reviewed and discussed in details. A
modeling framework that properly account for the effect of the
different forces on the droplet motion is used as suggested by
Chiesa et al. [3]. Experiments are performed to observe the
behavior of two falling droplets released simultaneously into
oil. The electrical field applied perpendicularly to the direction
of the motion induces charges on the water droplets. This causes
adjacent droplets to align with the field and attract each other. A
comparison between observations and predictions is presented
in order to assess the performance of the modeling framework
used in this work.

Theoretical background

The trajectory of a spherical dropleti is calculated by integrat-
ing Newton’s second law. The law equates the droplet inertia
with the forces acting on it, and reads:

dxi

dt
= vi (1)

mi
dvi

dt
= Ffluid +Fext+Fd-d, (2)

wheremi , xi , andvi are the mass, position, and velocity of the
droplet. Ffluid represents the vector of forces acting from the
fluid on the droplet,Fext is the external force vector, andFd-d
represents the inter-droplet force vector. Droplet tracking with
droplet-droplet interaction has a high computational cost. It is
therefore important to keep the computational work necessary
to calculate the particle forces as low as possible since theforces
have to be calculated for each particle. Finally models should
be easily implementable in a numerical code.

In the following sessions, models for the forces that are believed
to dictate the motion of droplets falling in oil under the influ-
ence of an electric field are reviewed and discussed in details.
The modeling framework proposed by Chiesa et al. [3] is used
in the present work. The electric force between the particleand
the droplet is modeled with either the analytical expression ob-
tained by Davis [4], the DID model by Siu et al. [5] or the
point dipole model by Klingeberg et al. [6]. When describ-
ing the motion of a falling water droplet the effect of internal
circulation induced in the droplet has to be taken into account.
Internal circulation reduces the viscous part of the drag force
and therefore the drag coefficient needs to be corrected in order
to account for this reduction as outlined by Happel and Bren-
ner [7]. Furthermore, the surface tension varies over the droplet
surface by the effect of surfactant on the interface and by elon-
gation of the droplet, caused by the electric field. This leads
to interfacial stresses that inhibit the creation of internal circu-
lation. LeVan [8] suggests how to take into account the effect
of surface tension gradient in our numerical framework. The
model proposed by Vinogradova [9] takes into account the slip
between the liquid film and the approaching spheres.

Modeling the fluid-droplet and body forces

Fluid droplet forces are transfered from the fluid to the droplets
through friction and pressure difference. These forces areex-



pressed exactly by the following surface integral:

1
Vd

Ffluid =
1

Vd

Z

Ad

(−psnd + τd ·nd) dA (3)

whereVd is the volume of the droplet.ps is the pressure at the
droplet surface,nd represents the unit outward normal vector
andτd is the shear stress tensor at the droplet surface. The pres-
sure and the friction on the interface are unknown and Eq. (3)
has to be modeled. In the Lagrangian framework, the models
for the surface integral attempt to provide particular physical
meanings.

The ‘steady-state’ drag forceacts on a droplet in a uniform
pressure field when there is no acceleration of the relative ve-
locity between the droplet and the conveying fluid. The force
reads:

Fd =
1
2

ρcCdA|u−v|(u−v), (4)

Surfactants on the interface and elongation of the droplet,
caused by the electric field, give a variation in the surface ten-
sion. The surface tension gradient leads to interfacial stresses
that inhibit the creation of internal circulation. The surface ten-
sion gradient is included in the formula by LeVan [8] for the
drag coefficient:

Cd =
24
Red

3λ+2+2κ(µcrd)−1 +2/3γ1(µc|u−v|)−1

3λ+3+2κ(µcrd)−1 , (5)

where also the surface dilational viscosityκ is taken into ac-
count. However, in the present work surface dilational viscosity
is neglected,κ = 0. In Eq. (5) it is assumed that the interfacial
tension varies as followsγ = γ0 + γ1cosψ whereψ is measured
from the front stagnation point.

Thevirtual mass forceFvm is an unsteady force that describes
the acceleration of fluid when a particle and the fluid have a
relative acceleration. It reads:

Fvm =
ρcVd

2

(

Du
Dt

−
dv
dt

)

(6)

We assume that the droplets have no net charge, hence the elec-
tric field as a far field force can be neglected. On the other hand,
the electric field gives rise to dipole-dipole interactionsbetween
the droplets, which are modeled as inter-droplet forces. Then
the gravity is the onlyexternal forceand the buoyancy force is
given by:

Fb = (ρd−ρc)gVdeg (7)

whereg andeg are the modulus and the direction of the gravity.

In the present work, the effects of the pressure gradient, the Bas-
set history force and the lift forces have been neglected. The
pressure difference over a small droplet is negligible due to the
size of the droplets. The contribution from the gravity is han-
dled separately. Lift forces are due to droplet rotation andshear
forces, and can therefore be neglected when a rigid sphere or
droplet is falling in a stagnant fluid. Due to the small size ofthe
spheres and the high viscosity of the oil, the particle time scale
is very small. Thereby follows that the Stokes number is small
and the Basset history force can therefore be neglected [10].

Modeling droplet-droplet forces

The inter-droplet forces are the film thinning forces, due to
the drainage of the fluid between the droplets, and the electric
forces due to polarization of the conductive water droplets.

Thefilm-thinning force is caused by drainage of the liquid film
between two approaching droplets. The derivation of the formu-
las usually requires that the gap between the particles is small
h ≪ a and that the flow is within Stokes regimeRedh ≪ a.
a = (r1r2)/(r1 + r2) is the reduced radius. When the particles
are very close, a slip will occur and avoid a zero impact veloc-
ity. The formula of Vinogradova [9] for the fil-thinning force
includes a slip distanceb and reads:

F f = −
6πµca2(vr ·er)

h

{

2h
6b
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h
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)
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(
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)

−1

]}

er .

(8)

Theelectric forcesare due to polarization of the conductive wa-
ter droplets. Consider an uncharged spherical droplet placed in
an insulating medium. The droplet is furthermore subjectedto
an electric fieldE0. The field outside a dielectric sphere of per-
mittivity εd corresponds exactly to the electric field of a dipole
located at the sphere centre. The value of this dipole moment
p depends on the sphere size, permittivity and the strength of
the electric field. Due to the polarization of the droplet, the
poles will have charges of same magnitude but opposite polar-
ity, preserving zero net charge. In a homogeneous field, the net
force on the droplet is zero. Subjected to an inhomogeneous
field the droplet will experience a stronger field at one pole than
at the other, resulting in a net force acting on the droplet in
the direction of the field gradient, a phenomenon called dielec-
trophoresis. The resulting force is given byF = (p·∇)E. If the
permittivity of the dropεd is higher than the permittivity of the
surrounding mediumεoil , the drop will move towards the high
field region. An inhomogeneous electric field may for instance
be set up by nearby point charge or another dielectric droplet.
In the latter case the electrostatic force attracts the two droplets,
given thatεd > εoil .

Point dipole model
For large droplet distances|d|/rd ≫ 1 we can approximate the
electrostatic interaction between two droplets as the force be-
tween two dipoles located at the sphere centres. This is fre-
quently referred to as thepoint-dipole approximation. The
forces in radial directionFr and tangential directionFt read [6]:

Fr =
12πβ2εoil |E0|

2r3
2r3

1

|d|4

(

3k1 cos2 θ−1
)

(9)

Ft = −
12πβ2εoil |E0|

2r3
2r3

1

|d|4
k2sin(2θ), (10)

whereθ is the angle between the direction of the electrical field
E0 and the relative droplet position vectord. β is defined as:
β = εd−εoil

εd+2εoil
. k1 = 1 andk2 = 1 in the point dipole approxi-

mation. The point-dipole model is not valid when the droplets
are approaching each other. In the literature there are differ-
ent approaches to find the dipole-dipole forces beyond the point
dipole approximation for multiple particles of arbitrary size and
position.

The multiple image method
A promising method, themultiple image method, was presented
by Yu et al. [11]. The two first terms in the multiple image
method gives the dipole induced dipole model (DID) [5], which
is simple and numerical efficient. Siu et al. [5] show that the
DID model is in good agreement with experimental values for
|d|/r1 > 0.1 for equally sized conductive particles. The DID
model reads as Eq. (9) and (10), where the coefficientsK1 6= 1
andK2 6= 1, see Siu et al. [5] for further details. In the limit
|d| → ∞ the coefficientsK1 andK2 approach unity and we re-
cover the point dipole model given by Eq. (9) and (10).



The analytical solution
Davis [4] found an analytical solution to Laplace’s equation for
two conducting spheres of arbitrary size, discplacement and net
charge, using bi-spherical coordinates. The exact solution for
uncharged spheres is given by:

Fr = 4πεoil |E0|
2r2

2

(

F1cos2 θ+F2sin2θ
)

(11)

Ft = 4πεoil |E0|
2r2

2F3sin(2θ), (12)

where the parametersF1, F2, and F3 are complicated series
depending on the ratios|d|/r2 and r1/r2. Unfortunately, the
computational cost required for calculatingF1 −F3 is high in
a multi-droplet situation. However, the exact solution is ex-
cellent for benchmarking other models in cases with two parti-
cles/droplets. For large drop separations|d|/r1 ≫ 1 the force
componentsF1 − F3 approach the values of the point-dipole
Eq. (9) and (10). For small separations|d|/r1 < 1, F2 andF3
takes constant values whileF1 diverges, see Atten [2].

Results and Discussions

0.0 1.8e-3 3.6e-3 5.4e-3 7.2e-3 9.0e-3

-9.0e-3

-7.2e-3

-5.4e-3

-3.6e-3

-1.8e-3

0,0

x[m]

y
[m

]

(a) t = 0s
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(b) t = 0.56s
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(c) t = 0.80s
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(d) t ∈ (0,0.80)s

Figure 1: Experimental observation of the kinematic of two wa-
ter droplets falling in a stagnant oil under the influence of an
electric field.

Experiments are designed for visual observation of water
droplets in oil under the influence of electric field stress, see [3].
Two sub-millimeters sized water droplets are released within an
upper ground electrode from a glass capillary coated with gold
to avoid static charge transfer from glass to the particle. The two
water droplets fall freely in Nytro 10X oil and aftert = 0.56s
an electric 50Hz field of magnitude 280V/mm is applied. The
electric field is horizontally applied thus perpendicular to the
direction of the droplets motion. A sinusoidal voltage withfre-
quency 50Hz is used. Droplet interactions and coalescence are
recorded with the Phantom V4 high speed CMOS camera.

Numerically, the governing equations (1) and (2) are solved
with a Runge-Kutta Fehlberg 4-5 solver with step-size control.

(a) t = 0s (b) t = 0.56s

(c) t = 0.80s (d) t ∈ (0,0.80)s

Figure 2: Visual prediction of the kinematic of two water
droplets falling in a stagnant oil under the influence of an elec-
tric field. The models of Davis, LeVan, Vinogradova are em-
ployed.

Accurate simulations are ensured by using a relative tolerance
of 10−5 and an absolute tolerance of 10−25. The modeling
framework outlined in [3] is used in the present work to predict
the kinematics of two water droplets simultaneously released in
oil. The radius of the smallest droplet placed on the left in the
experiments isr1 = 533µm and the radius of the biggest one is
r2 = 553µm. Uncertainty in measured droplet diameter is less
than 10µm. The position of the droplets is recorded with a high
speed CMOS camera and it is digitally extracted from the se-
quential frames [3]. Fig. 1 shows a series of frames at different
times. At timet = 0.0s, see Fig. 1 a) the droplets are released
in the oil. The droplets fall down because of gravity and at time
t = 0.56s an electric field perpendicular to the direction of the
droplets motion is applied. Fig. 1 b) shows the droplets posi-
tion at the instant when the field is applied. Fig. 1 c) shows the
droplets position at timet = 0.80s, when the droplets are just
about to coalesce. The electrical field induces charges on the
water droplets and this causes adjacent droplets to align with
the field and attract each other. Fig. 1 d) shows a sequence of
frames taken at a time interval∆t = 0.20s where the effect of
the electric field on the droplet kinematics is observable. The
biggest droplet is observed to fall at a higher speed than the
smallest one and therefore the angle between the center of the
droplets and the normal to the droplets motion increases. This
trend is reversed when a field normal to the droplet motion is ap-
plied and the droplets tend to align with the field. Fig. 2 shows
a visual prediction of the kinematics of the two falling droplets
when the Davis model is employed together with the models of
LeVan, and Vinogradova as previously explained. The observed
y-coordinates of the two droplets are here compared to the pre-
dictions obtained when using different models for the electric
forces. Fig. 3 shows a comparison between the predicted and
observedy-coordinate of the two droplets as a function of time.
The Davis, the DID and the point dipole models are used to-
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Figure 3: Observed and predicted vertical coordinate versus
time of droplet 1 a), b) and of droplet 2 c),d). Different models
for the electrical forces are adopted together with the models of
LeVan, and Vinogradova.

gether with the models of LeVan, and Vinogradova to predict
the time of coalescence and droplets kinematic of the droplets.
The results obtained by the Davis model predict well the timeof
coalescence and the overall kinematic of the two droplets. The
simulation obtained by the other two models overestimated the
collision time. This result is coherent to the results presented by
Chiesa et al. [3]. The point dipole model underestimates theef-
fect of the electric forces on the kinematic of the droplets.In the
numerical prediction, the biggest droplet is falling at a higher
speed than the smallest one as observed in the experiment. The
predicted fall of the smallest droplet up to timet = 0.56s agrees
well with the experimental observations see Fig. 3a) and b).On
the other hand the predicted fall of the biggest droplet is slightly
overestimated, see Fig. 3c) and d). This is most probably due
to the uncertainty related to the measured droplets size. There
is not any reason to believe that the drag model needs to be re-
viewed in order to account for the vicinity of the other droplet.
The drag force acting on the droplets is effected by the present
of a second droplet in its vicinity when the droplets lye in the
boundary layer of the neighboring one. In the present case, the
boundary layer is very small due to the high viscosity of the
oil in which the droplets are moving. The predicted and ob-
served normalized distanceh/r1 between the droplets centers
as a function of time is plotted in Fig. 3e). The time to collision

predicted by means of the Davis equations well agrees with the
coalescence time observed in the experiments.

Observations

The motion of two fluid droplets simultaneously released in oil
is predicted by means of the modeling framework proposed by
Chiesa et al. [3]. The effect of internal circulation induced in
the droplets is taken into account together with the variation of
the surface tension of the droplets due to the electric field.The
electric field is applied normally to the motion of the droplets
after 0.56s of free fall. The droplets tend to align with the field
before they eventually coalesce with each other. This behav-
ior is well predicted by the model proposed by LeVan Eq. (5)
for the drag force, by Vinogradova Eq. (8) for the film-thinning
force and the Davis’ analytical expression. The use of different
models to take into account the effect of electrical fields isalso
assessed. The ’time of coalescence’ predicted by means of the
Davis equations well agrees with the collision time observed in
the experiments.
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