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Abstract

This paper examines in some detail how the decay of homo-
geneous turbulence in the absence of shear is affected by the
constraints of finite boundaries. It demonstrates how the ratio
of the wavenumbers of the spectral peak to the lowest resolved
wavenumber (or tunnel size to integral scale) can influence di-
rectly the time dependence of the energy, the integral scale, and
even the rate of decay of the turbulence. If this ratio is not large
enough, the length scales grow too slowly and the energy de-
cays too fast. Criteria are proposed for assessing the validity of
the data; but few experiments or simulations satisfy them.

Introduction

The theory of homogeneous isotropic turbulence begins with
G. I. Taylor in the 1930’s [8], who was among the first to re-
alize that simple closure approximations were not leading to a
solution of the turbulence problem. Most have learned about
such turbulence from the monograph Homogeneous Turbulence
by G. K. Batchelor [1] whose career we honor at this meet-
ing. Because this book was written more than 50 years ago, our
understanding has changed in the past half century, and it was
evolving even at the time the book was being written. Even so
this book stands as a landmark achievement, and remains one
of the most eloquent and elegant expressions of the theory of
homogeneous turbulence.

Yet it is a truth that once an idea is in print, it remains in print
forever, even if the idea is wrong. It is read by succeeding gen-
erations as truth, even if the ideas expressed therein have long
been proven wrong. This is because the first time reader is usu-
ally not aware of the subsequent advances or new questions, nor
for that matter are many experienced researchers who were not
involved in them. Therefore the bulk of the research commu-
nity remains more or less frozen in time — the time the book
was written — until a newer book comes along. The wait can
significantly stymie progress, since it can lead to the view that
all the problems in a given field have been resolved and no fur-
ther research is necessary, when in fact much may remain un-
resolved. Because of the well-deserved stature of Batchelor’s
Homogeneous Turbulence and the lack of major breakthroughs,
this has been the case with the subject of homogeneous turbu-
lence. Newer books have come along, some massive volumes
which meticulously detail our progress, others which oversim-
plify — all lacking the appeal and authority of Batchelor’s.

This paper is an attempt to review the progress of our under-
standing about some of the ideas in homogeneous turbulence
since Batchelor’s book was written. It is our view that to do so
(and to do so at this meeting) is very much in the spirit with
which the original book was written — as snapshot our under-
standing in 1951 for the purpose of stimulating further work. If
Batchelor had intended otherwise, he would have published it
as a text instead of a monograph. We can only honor him by
continuing to push forward the agenda he laid out on a subject
so clearly dear to him.
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historical perspective

geneous turbulence is the simplest type of turbulence, es-
ly if the further assumption of isotropy is made. In the
tical problem there is no mean flow, no production of en-
no spatial gradients of any averaged quantity. The turbu-
simply decays, so it is described exactly by :

d
dt

� q2 �
2

��� ε (1)

ε is the rate of dissipation of turbulence energy per unit
defined by ε � 2ν � si jsi j

� . (The instantaneous turbu-
kinetic energy per unit mass is q2 � uiui and si j is the
ating strain rate.)

ally it is assumed that the energy decays as a power law
e; i.e., � q2 � ∝ tn where for decay we must have n � 0.
here are only two theories that actually derive a power law
more or less first principles. The first was due to von Kar-
nd Howarth [7] in their famous 1938 paper in which they
from a similarity hypothesis that n ��� 1. There were

attempts to obtain this result in the laboratory by mea-
downstream of a grid. Initially it was believed n ��� 1

retty good (see [1]). But as tunnels got better (longer and
background intensity) and hot-wires got better (smaller
wer noise), it became clear that the Townsend/Batchelor
rements yielding n ��� 1 were really in error. Corrsin
e main dissenter, and the careful experiments at Hopkins
and his students throughout the 1950’s consistently got

ers for n � � 1. But he could never really convince the
ridge researchers to admit their data might be in error, so
ally shipped all his grids to Cambridge so they could check
for themselves. They never did use them (to the best of my
ledge), but Townsend did use Corrsin’s results in the sec-
dition of his book, so I guess he must have decided Corrsin
ore or less right — and the Comte-Bellot/Corrsin [3], [4]

s did appear in the Journal of Fluid Mechanics of which
elor was founder and editor.

e end result of all this is that few now believe you will
ee n ��� 1. In fact, it seems that almost everyone more or
ssumes that the Comte-Bellot/Corrsin experiments were
st word on this subject and that it is established forever��� 1 	 25. Now in fact, CBC got this result for only two
low Reynolds numbers which differed only by a factor of
nd then ONLY for the square bar grids! All of the other
gave very different results, and the tables they include of
easurements of others vary from near n �
� 1 to n ��� 1 	 5.
uriously, the DNS people have been trying for years to
uce the � 1 	 25 number, and only recently are succeeding

aybe [2], [10]. What they usually get instead is a wide
of values from close to n �
� 1 to n ��� 2 	 5. The number
rs to go down as the grid Reynolds number increases. And
are also indications that the result depends on how the flow
s (e.g., the size of the energy scales relative to the size of
x), and even more importantly, which part of the decay



one decides to fit a power law to. Some of this will be discussed
in the next section.

Why bother? Isn’t homogeneous turbulence irrelevant?

There are many people, not only in industry but in the research
community as well, who state quite openly that no one should
waste any time on homogeneous turbulence. They really believe
it is irrelevant to the many important engineering and scientific
problems in turbulence. Well, it is easy to show they simply
don’t understand what is at stake here.

Let’s consider the simple k � ε turbulence model (which acc-
counts for about 95 % or more of the industrial use at present).
The model equations reduce to:

dk
dt

� � ε (2)

dε
dt

� � C
ε2

k
(3)

where it is hoped that C (usually called Cε2 ) is a universal con-
stant — or at least a universal parameter which can be deter-
mined from a simple experiment. In other words, if this model
is to be of any use at all, it must be possible to determine C
independent of the flow being calculated. The obvious choice
of experiment is homogeneous decaying turbulence, exactly the
flow under discussion here.

Now let’s assume (as all do) that the energy decays as a power
of t, say k � Atn with constant n. This together with equation 2
implies that ε �
� nAtn � 1 and dε � dt ��� n � n � 1 � Atn � 2. So
equation 3 implies:

dε
dt
��� n � n � 1 � Atn � 2 ��� C

� � nAtn � 1 � 2
Atn (4)

It follows immediately that our simple “constant”, C is given
by:

C � n � 1
n

(5)

It is easy to see why turbulence modellers desperately want n
to be a constant and universal, since for the range of values
cited above, 1 	 4 � C � 2. So they have a strong motivation
to pick the experiment they want, and to assume all the oth-
ers wrong. And given the range of uncertainty, it is not hard
to understand why most engineers using the model simply pick
the value that works best for them, losing in the process the
confidence that they can really “predict” anything at all. (A lot
of turbulence “prediction” is like predicting yesterday’s weather
— you change the model until you get the right answer. It works
almost every time — but only for yesterday.)

OK, you say, we simply make C a function of the local Reynolds
number. Nice idea, but in fact it appears that the primary deter-
minant of n is who did the experiment or simulation, how they
started the flow, and even how big the experimental or computa-
tional box is relative to the size of the energy containing eddies.
These are definitely not factors one wants to have to try to pa-
rameterize into an engineering turbulence model! It is not likely
all of the careful researchers could be so incompetent to produce
such a range, were there not some underlying physical reason.
So clearly if we are to move beyond our current confusion, we
must first understand why we get the various values of n in the
first place. The reasons suggested below are twofold: first, that
we may not have done the experiments right; and second, that
nature may actually produce different values even when the ex-
periments (and simulations) are performed properly.
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e ever obtain a truly homogeneous turbulence?

s a very important question, but it really is not often asked?
ontrast, there has been a lot of interest over the years about
er it is possible to generate isotropic turbulence.) The an-
to both questions is unequivocally NO! The definition of
ogeneous flow demands that the statistics be independent
gin. Obviously no finite experiment or computer simula-
an achieve this. So the questions we really ought to be

are:

Can we make useful approximations to homogenous tur-
bulence?

Under what conditions are our approximate attempts
valid?

roblem we face is easily seen by examining the three im-
t spectral integrals determining the energy, the dissipation
e integral scale. If, following Batchelor [1], we denote
ergy spectrum averaged over spherical shells of radius k

k � , these are:

y
3
2

u2 ��� ∞

0
E � k � dk (6)

ral Scale

L � π
2u2
� ∞

0

E � k �
k

dk (7)

ation

ε � 2ν � ∞

0
k2E � k � dk (8)

ly we can not expect to model scales larger than the box
n an experiment or lower than the lowest wavenumber
eriodic simulation. Therefore the wavenumbers below
cutoff low wavenumber, say kL, are not present. And,
rse, we cannot integrate to infinity either, because we are
d by probe response and numerical resolution to some fi-
avenumber, say kH . It should be obvious from the equa-

above that even these three simple measures, u2, L, and ε
e affected very differently. A simulation or experiment

adequately resolve the energy, but be seriously in error
e integral scale or dissipation. Worse, the energy which
d have been in the missing scales has not simply disap-
d, it has been redistributed and may have an adverse effect

entire spectrum. It is important to note that this should
e taken to imply the experiment or simulation is wrong,
hat it is not a proper approximation for homogeneous de-
g turbulence.

ard part of the problem is to figure out which scales (if
re correctly represented and which are not; and which of

atistical quantities are properly representative of homoge-
turbulence, which are not. Clearly there is no reason to

t that all statistical quantities are properly represented just
se a few are, especially since some may depend on the
scales, others on the large. Nor is there any reason to ex-
ur approximate attempts to be valid for all times. There
e transients at the beginning, and confinement effects at
d, since the scales grow in time during decay. So our goal
be to figure out what approximations are valid and when.

same questions were asked by the early experimenters,
he rather crude answers were decades in coming. For
ple, the early experiments of G.I. Taylor [8] used a very
tunnel with a very crude grid. It really wasn’t until the
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Figure 1: Ratio of energy above kL to total energy versus kL � kp .

careful experiments of Corrsin and co-workers that it was con-
firmed that the energy didn’t really decay properly unless you
had many meshes (typically 20 or more) across the flow. And
also it was necessary to start measuring farther away from the
grid than about 20 to 40 mesh lengths for the flow to behave
properly. These were really empirical findings obtained with
great effort. With modern CFD we can ask much more difficult
questions. But the answers will be much the same. Crowd the
turbulence into too small a space (physically or computation-
ally) and the decay rate will be faster than the corresponding
homogeneous turbulence. Statistics which depend on the small-
est scales will be more accurate than those that depend on the
largest, unless the former are also influenced adversely by reso-
lution problems.

Before we proceed further along this line, let’s deal with one
of the common fallacies that one often hears: namely that we
really shouldn’t bother with the theory of homogeneous turbu-
lence, but we should treat the experiments (or data) as sacred.
Of course, assuming the measurements are correctly taken and
the simulations properly done, they are indeed accurate repre-
sentations of the flow generated. But unfortunately, as such,
they are really pretty useless to the would-be turbulence mod-
ellers, since who wants a turbulence model that has built into
it the idiosyncracies of a windtunnel or a CFD code. Measure-
ments are only useful if we can sort out the physics from the
experimental or computational boundary conditions. If there
were a corresponding theoretical foundation for periodic turbu-
lence or box turbulence, we could use that. But so far, it is only
homogenous turbulence which provides us all the relationships
and consistency checks that Batchelor [1] so nicely put forth.
And it is only the assumption of homogeneity that makes all
those other difficult terms (like convection and turbulence dif-
fusion) disappear so we can isolate terms we wish to model. So
approximate this ideal state, we must. In the following sections
we shall review recent progress in understanding the limitations
of our approximations.

How serious is the problem of the large scales?

This problem has recently been considered in some detail by
Wang and George [9] who used a model spectrum to evalu-
ate how much the missing largest scales contribute to the ki-
netic energy and the integral scale. Figures 1 and 2 summarize
their findings as ratios of the partial integrals above the cutoff
wavenumber kL, to the total integrals for the energy and inte-
gral scale (equations 6 and 7). The cutoff wavenumber has
been normalized by the peak in the energy spectrum, kp, but
can equally be expressed using the integral scale itself as shown
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e 2: Ratio of portion of integral scale above kL to total
al scale versus kL � kp.

. Clearly as the peak wavenumber moves closer to the
wavenumber, the values that can be estimated from the

re reduced, and in the case of the integral scale, signifi-
. The parameter p is the power law dependence assumed
e spectrum at the origin where E ∝ kp. Not surprisingly,
tegral scale shows a strong dependence on this very low
umber behavior.

odel spectrum used is a generalization of the spectrum
ally proposed by von Karman/Howarth [7], and in non-
sional form using u2 and L is given by:

E � k � t � � u2L
Cp � kL � p�

1 ��� k � ke � 2 � p � 2 � 5 � 6 (9)

normalization collapses the one-dimensional spectra in
urbulence well into the equilibrium range. This particu-
rm is the infinite Reynolds number limit of the composite
um used by Gamard and George [5], the one-dimensional
of which provides an excellent fit at all wavenumbers to
ence spectra behind a grid from 50 � Rλ

� 500. The co-
nt, Cp, and the cut-off wavenumber, ke, must be chosen
t the spectral integrals produce the proper values for the
y and integral scale (as shown below).

alue of p must be specified, but will be chosen in the sub-
nt sections to correspond to the George [6] similarity re-
:

p ��� 2n � 1 (10)

n is the decay exponent. One advantage of this choice
t Cp is then an invariant of the decay. A disadvantage is
may predispose the answer, a subject addressed in some
below. The quantities ke and Cp can be related to u2 and
al scale, L by substituting equation 9 into equations 6 and
e results are:

keL � 3π
4

B � 56 � p
2 �

B � 13 � p � 1
2 � (11)

Cp
��� 4

πB � 56 � p
2 �! 1 � p � B � 13 � p � 1

2 �
3  p

(12)

B is the familiar beta function. Thus both keL and Cp are
nts dependent only on the value chosen for p.

er wavenumber of interest is the wavenumber at which the
um E � k � t � has its maximum, say kp. It is straightforward
w (by setting dE � dk � 0) that kp is given by:
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Figure 3: E � k �"� u2λ versus kλ for the de Bruyn Kops/Riley [2]
DNS data.

kpL � 3π
4 # 3p

5 $ 1 � 2 B � 56 � p
2 �

B � 13 � p � 1
2 � (13)

Correcting the integrated spectra for the missing wavenum-
bers

The advantage of the spectral model of equation 9 is that the
ratios plotted in Figures 1 and 2 could be obtained analytically.
The result for the energy ratio that has been plotted in Figure 1
is:

u2
m

u2
� Iz � 13 � p � 1

2
;z � (14)

where Iz is the incomplete Beta function. The variable z is de-
fined as:

z � 1
1 ��� 3p � 5 �%� kL � kp � 2 (15)

where kL is the lowest (or cutoff) wavenumber of the simulation
or spectral estimator, and kp is the peak in the energy spectrum.

Similar considerations showed that the ratio of the computed to
true integral scale is given by:

Lm

L
� u2

u2
m

Iz � 56 � p2 ;z � (16)

Another advantage of these analytical results is that they can be
used to estimate what the proper values of u2 and L might have
been had the missing low wavenumbers been available. This
is not simple because the true integral scale, L, appears in both
equations (since it determines ke or kp), and on both sides of
equation 16. This can be done, however, by iteration: simply
supply the measured values along with the cut-off wavenumber,
kL, and iterate the choices of u2 and L until equations 14 and 16
are satisfied. The problem is how to choose p without biasing
the answer. The results of such a procedure will be shown be-
low, along with some considerable discussion of the validity of
the entire procedure. Obviously such a procedure makes sense
only if the part of the spectrum that is available from the data
itself reasonably models a homogeneous turbulence.

What do real DNS data look like?

Figure 3 is taken from [9], and shows the recent 5123 simula-
tion of de Bruyn Kops and Riley [2]. The data have been plot-
ted as E � k �&� u2λ versus kλ as suggested by [6], and have been
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e 4:
�
E � k �&� u2λ � � kλ versus kλ for the de Bruyn Kops/Riley

NS data.

only from the approximately constant power law region
fied below. Note especially the scarcity of wavenumbers
the peak for the longest times. And even for the early
only a few wavenumbers are available. Clearly the en-
s underestimated if the integral cannot be performed over
umbers significantly below the peak wavenumber. Since
ectral peak is moving to lower wavenumbers as the tur-

ce decays, the situation gets worse with time. So even if
pic turbulence decayed with a simple power law with con-
exponent, the uncorrected attempts to simulate it would
r to decay with a time-dependent and increasingly nega-
xponent. Note that the problem addressed here is only as-
g that the energy spectrum itself has not been affected by
bility to send energy to these missing low wavenumbers.

e 4 shows the same data plotted using E � k instead of E,
ormalized using u2 and λ. Since the integrand of equa-
depends on E � k, the effects of the missing low wavenum-
ccur much earlier for the integral scale than for the energy.
values of kL � kp which have negligible effect on the energy,
a major underestimate of the integral scale.

se of the scarcity of spectral data below the peak
umber in all the simulations (having mostly to do with
anner in which the averages are made), very little of the
hed DNS spectral data can be used for the energy without
ing about the contribution below kL, and virtually none is
table for the integral scale. Since the lowest wavenumber
simulations is known, however, it is possible to make an

ximate correction to the values of u2
m and Lm determined

ly from the data if p is known. (Note that it is very impor-
only use data determined by integrating above the lowest
umber, since any attempt to fill in the amount from zero

will result in an over-correction.) As is clear from the Fig-
and 2, the amount of correction is quite sensitive to the

of p. The effects of such a correction will be demonstrated
next section once it has been established that a power law
is an appropriate description.

real turbulence decay follow a power law decay?

sitive test for whether turbulence in fact decays as a power
ith constant n is provided by the Taylor microscale defined

λ2 � 15νu2 � ε (17)

ν is the kinematic viscosity and ε is the rate of dissipation
by:
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Figure 5: Corrected and uncorrected dλ2 � νdt versus t for Wray
DNS data [10].

ε ��� d
dt # 32 u2 $ (18)

It follows immediately that if the turbulence decays as a power
law decay (with constant n), then the Taylor microscale squared
grows linearly in time [1]; i.e.,

λ2 � 2Aν � t � to � (19)

where A is a constant and to is a possible virtual origin. The
value of 2A is specified by the George [6] theory to be:

A ��� 5
n

(20)

In practice a power law curve can almost always be made to fit
some portion of every experiment or simulation since, including
the virtual origin, there are three parameters. This arbitrariness
can be entirely avoided by taking the derivative of equation 19
to obtain:

1
ν

dλ2

dt
� 2A� � 10

n
(21)

Thus this derivative produces a simple constant value if the tur-
bulence decays as a simple power of time. If the George theory
is correct, the value of this constant is determined exactly by
the decay rate parameter, n. Moreover, the virtual origin can be
chosen by fitting λ2 since this must grow linearly.

Figures 5 and 6 display dλ2 � νdt versus time for two attempts
to simulate decaying isotropic turbulence using DNS. The first
is a 5123 simulation due to Wray [10]; the second also a 5123

simulation due to de Bruyn Kops and Riley [2]. The time, t,
in both plots is in the scaled variables described by the respec-
tive authors. Each plot shows two curves, one obtained by di-
rectly integrating the spectral data, the other by correcting for
the missing low wavenumbers as discussed in the next section.

Figure 5 would suggests that there is at most a very short region
that might be described by a power law with constant exponent
(4 	 5 � t � 6). The beginning behavior (t � 4) is undoubtedly the
starting transient (perhaps due to the limited high wavenumber
resolution as demonstrated below). The slow decline for large
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is problematical, but probably due to the fact the energy
ould have gone to the low wavenumbers has been redis-

ed. The horizontal line is the value computed from equa-
1 by Wang and George [9] using n ��� 1 	 5 which corre-
s to 2A � 6 	 67.

e 6 by contrast shows an extensive region for which
t ' constant. The slow roll-off for very large times of
iginal data from the integrated spectrum is slightly over-
ted, most likely a consequence of the breakdown of the
geneous approximation at this long time. The horizon-
e corresponds to the value n �(� 1 	 17 used by Wang and
e [9] which yields 2A � 8 	 54 from equation 21.

for at least part of the time, these simulations are clearly
tent with the a power law decay (with constant n), and
ith equation 21. Since the latter depends explicitly on the
ption of homogeneous turbulence, it seems reasonable to

ude that these flows are acceptable approximations for ho-
neous turbulence — at least once correction is made for
issing large scales. Equally, it makes no sense to use data
e these regimes to validate (or invalidate) theories of ho-
neous turbulence, at least those theories which depend on
sumption that n � constant.

es 7 and 8 show plots of the corrected and uncorrected de
Kops/Riley data for the energy and Taylor microscale,

with the theoretical relations. The relative rms error be-
corrected data and theory over the region from 0 	 35 � t �
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Figure 8: Corrected and uncorrected λ2 versus t for de Bruyn
Kops/Riley [2] data

0 	 7 (for which the power is constant) is less that 0 	 2 %. What
is important to note about these plots is that the only adjustable
parameter is the virtual origin, to � 0 	 072 (which is same for
all quantities), since the power was determined by the plots of
dλ2 � νdt and equation 21. This considerably constrains the pos-
sible fits. Without this constraint it is still possible to fit these
same data with very different power laws to almost the same ac-
curacy, even for the region where dλ2 � dt ' constant. But these
other powers will not yield the value of 10 � n for the constant,
thus failing to provide internal consistency.

How about the integral scale?

As expected, the biggest differences between corrected and un-
corrected data by far are for the integral scale. Figure 9 shows
the variation of integral scale with time. The uncorrected data
follow a power law growth with exponent below 0 	 4, but the
corrected data are within 0 	 24 % of the same square root de-
pendence of the Taylor microscale. This is even more evident
in the plot of L � λ shown in Figure 10 for the corrected and un-
corrected data. This plot is of considerable interest (at least to
these authors) since the George theory [6] predicts this ratio to
be constant, but dependent on the initial conditions. For the
corrected data, this ratio is constant at 3 	 40 to within 0 	 16 %
for the region for which n ' constant, and to within 0 	 4 % for
the entire time of the calculations! Clearly for the de Bruyn
Kops/Riley [2] data this ratio is remarkably constant, at least
when corrected for the missing lowest wavenumbers.
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Figure 9: Corrected and uncorrected L versus t for de Bruyn
Kops/Riley [2] data.
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happens when the box is truly too small?

can two simulations, both of which appear to have been
lly carried out, have produced such different results. It
course, understandable that both take different routes to
e the expected power law state, since their initial condi-

were very different. But it is not immediately obvious why
mulation remains in that state, while the other does not.

correction of experimental data for any reason is at best
y business, since it is very easy to have assumed the an-
Certainly the model spectrum of equation 9 itself does

as the data toward the similarity theory of [6]. Even so,
to be chosen using the similarity relation (equation 10),

it could not be determined directly in view of the missing
t wavenumbers. Thus even though extensive consistency
s were performed iteratively, the results must be regarded
tative until subjected to definitive tests.

lad et al. [11] report a first such effort, but using three
small simulations, 323 and 643. All three used iden-

tarting spectra proportional to k2exp � � Ak2 � . The peak
umber was placed in exactly the same place, but the ratio

ak wavenumber to lowest wavenumber was exactly half
e 323 simulation compared to the 643; i.e., kp � kL

� 3
at the beginning of the simulation. For one of the 643

ations, the energy transfer was deliberately blocked to all
umbers greater than half the highest wavenumber; the
two were resolved to wavenumbers well above the Kol-
rov wavenumbers, and these are of primary interest here.
inal value of Rλ for all three simulations was 35.

es 11 and 12 show the energy spectra for the well-resolved
nd 323 respectively, both normalized using u2 and λ. No
tions were made to either set of data. Figures 13 and 14
the same data plotted as E � k, also normalized by the same
d λ. The effects of the low wavenumber cutoff are dra-
. The spectral collapse is affected at all wavenumbers, but
ially at the lowest wavenumbers. Energy which should
gone to the largest scales has obviously ended up some-

else. Clearly the 323 spectrum is not representative of
geneous turbulence. The 643 spectrum, on the other hand
es very similarly to the much larger simulation of [2] de-
d above. The causes are quite evident from Figure 15,
shows the evolution of kp � kL for the three simulations.

ffects of these spectral differences on the integral scale, L
e ratio of L � λ are demonstrated in Figures 16 and 17. The
al scale for the 323 does not grow as fast as the 643 sim-
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e 10: Corrected and uncorrected L � λ versus t for de Bruyn
Riley [2] data.
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Figure 11: E � k �&� u2λ for 643 DNS data of Wollblad et al. [11].
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Figure 12: E � k �&� u2λ for 323 DNS data of Wollblad et al. [11].

ulations, and in fact the two resemble closely the differences
between the corrected and uncorrected de Bruyn Kops/Riley
data shown above. The ratio of L � λ is nearly constant for the
643, dropping very slowly as the ratio of spectral peak to lowest
wavenumber decreases. By contrast, the ratio of L � λ drops no-
ticeably for the 323 simulation, much like the uncorrected data
of de Bruyn Kops/Riley shown above.

Figure 18 shows dλ2 � νdt for all three simulations. For the
well-resolved 643 simulation, the value is very nearly con-
stant at � 10 � n, corresponding to a constant power exponent of
n ��� 1 	 5. This value of n is exactly what would have been ex-
pected from equation 10 if the spectrum maintained its initial
low wavenumber behavior of p � 2 throughout decay. By con-
trast, the 323 simulation drops rapidly and shows no constant
power exponent region, consistent with the arguments earlier
that the redistributed energy has increased the decay rate. Fi-
nally, the curve labelled ‘truncated’ shows what happens if the
energy flux to highest wavenumbers is also blocked, and in fact
resembles somewhat the early time behavior of Figure 5. In
both cases, the high wavenumber resolution improves with time
and the untruncated results are eventually obtained, but only
near the very end of the calculation.

Summary and Conclusions

The goal of this paper was to review the state of homogeneous
decaying turbulence. It has been strongly suggested that we
may not have been doing things entirely correctly in our at-
tempts to realize such flows. In particular it has been argued
that the large scales are much more important than previously
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e 13: E � k �&� k normalized by u2λ versus kλ for 643 DNS
f Wollblad et al. [11].
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e 14: E � k �&� k normalized by u2λ versus kλ for 323 DNS
f Wollblad et al. [11].

ed. This is especially true for the integral scale determi-
, but also for the overall energetics of the flow as well.
se conclusions are correct and the treatment of the data
, the theory of homogeneous turbulence is in a much bet-
te than might have previously been believed. This in-

s not only the formal relations which appear in Batchelor
ut the recent similarity theory of George [6] as well.

ntrast, there seems to be much left to be done for the ex-
entalists and DNS’ers. But nothing will be contributed by
y producing data and doing curve fits. The field has moved
d this. Unless very large experimental facilities and very
computers suddenly come along, progress will only be
by careful interplay between theory and experiment in the
er demonstrated herein. The differences between current
es vary by very small powers of time (e.g., t0 ) 1 typically
e integral scale). This is on the order of all the other fac-
at affect the determination of turbulence quantities, like
tion, box-size and background noise.

advancements in science raise as many questions as they
r. Such is the case here. How, for example, can turbu-
remember its initial conditions? Or as important techno-
lly, how can we account for it in our engineering models?
we move to LES, or can a single point structural model
hat being advocated by W.C. Reynolds) account for these
s? Thus, the state of the field is this. Never have we had
questions to answer, nor more hope of finding the answers.
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Figure 15: kp � kL versus t for DNS data of Wollblad et al. [11].
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Figure 16: L versus t for DNS data of Wollblad et al. [11].
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