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Abstract 
This discussion covers some progress in turbulent mixing 
stemming from experimental, modeling, and direct-numerical 
simulation (DNS) studies. Topics include the mixing transition, 
results from DNS studies of the Rayleigh-Taylor instability in 
miscible fluids, experimental investigations in transverse jets and 
the assumption of isotropy in turbulence and mixing, and 
experiments in high-speed shear layers that elucidate some 
effects of compressibility on the mixed-fluid field. 
 
Introduction 

Turbulence remains a scientific challenge, despite sustained and 
inspired contributions especially during the latter half of the 20th 
century. Turbulent mixing presents particular difficulties because 
while driven by scalar fluxes typically dominated by large-scale 
motions, the final, diffusive, molecular-mixing stage occurs at the 
smallest spatial and temporal scales of the flow, necessitating a 
correct description of the whole spectrum. 

The ratio of the largest-to-smallest scales that need to be 
described is a function of the Reynolds number, Re, and Schmidt 
number (Sc = ν/D) of the flow.  Accepting standard scaling [1,2], 
we have λmax/λmin ~ Re3/4Sc1/2, corresponding to a required 
dynamic range proportional to Re3 for gas-phase mixing (Sc ≈ 1) 
to describe turbulence (3×¾ for space + ¾ for time). Liquid-
phase  (Sc ≈ 1000) mixing is even more challenging. In view of 
this scaling, it is tempting to ask how low Re can be for flow that 
is representative of bona fide turbulence. 
Considering the Re values of interest, this imposes a daunting 
task for any investigation, be it experimental or numerical 
simulation, as the dimensionality of the phenomena and the data 
required to describe them is very high. 
 
The mixing transition 

Turbulent flows exhibit a transition that can be conspicuous, at 
outer-scale Reynolds numbers, Re δ ≡ ρU δ / µ  ≥ 1−2×104, or a 
Taylor Reynolds number of ReT ≡ ρ u′ λT /  µ   ≥  100, where δ  is 
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Figure 1 Left: Rocket testing in the Los Angeles hills [3], Re > 108.  Right:
LIF measurements of jet-fluid concentration isosurfaces in a turbulent jet
in water [4], Re ≅ 104. 
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ter-scale length, U  the characteristic velocity that drives the 
, u′ the rms velocity, and λT the Taylor microscale. The latter 
ides a criterion where an outer-scale Reynolds number is not 
opriate. Where both can be defined, the quoted threshold 
s are consistent with the general approximate relation, 
 (Reδ)1/2. These provide necessary but not sufficient 

irements for this transition; laminar flows, for example, can 
countered at higher Re’s yet [5]. 

xplanation or this transition has been proposed in terms of 
eed for the existence of inertial-range dynamics, i.e., an 

cid range of scales. This leads to a criterion for a minimum 
olds number, as noted above, in accord with observations 

e this transition was first documented through its effects on 
ng, it is a transition of all aspects of the flow and manifests 
 in a multitude of ways.  As can be seen in figure 2, which 
rates the phenomenon, the qualitative difference between the 
and post-mixing-transition flow is considerable and easily 
tered through its effects on the probability-density function 
t-fluid concentration values, for example.  Inferences drawn 

re 2 Transverse jet in a uniform free stream, Uj / U∞ ≈ 10. 
centration field intensity compensated for mixing with x1/2 for 
alization purposes  Top: Re = 1000.  Bottom: Re = 10,000 [6]. 



from pre-transitional flows should be applied with care as such 
flows are not necessarily representative of high-Re flows. 

 
Growth and mixing in Rayleigh-Taylor flows 

The Rayleigh-Taylor instability (RTI) occurs whenever fluids of 
different density are accelerated in a direction opposite that of the 
density gradient. If the fluids are miscible, species diffusion and 
mixing, that reduce density differences and hence local forcing, 
can play a dynamic role. 

Recent direct numerical simulations (DNS) of RTI between 
miscible flows allowed investigations on the growth and mixing 
in Rayleigh-Taylor instability (RTI) flow [7].  Figure 3 plots the 
initial perturbation spectra for four numerical simulation runs.  
The Navier-Stokes equations, with matched fluid viscosities for 
the two fluids, with ρ2/ρ1 = 3, were augmented by a species-
conservation equation for binary Fickian diffusion.  The runs 
were executed on the Lawrence Livermore Pacific-Blue ASCI 
machines [7,8].  Cases A, B, and C were solved on a 2562×1024 
grid. Case D was solved on a 5122×2048 grid, ran on 1024 
processors, and required a year of wall-clock time. 

The linear stability analysis dispersion relation, σ(k), derives 
from the theory by Duff et al. [9], τ = (L/Ag)1/2, with L the 
transverse extent of the RTI cell, 

A ≡ (ρ2−ρ1) / (ρ2+ρ1) = 0.5,                           (1) 

the Atwood number, and g the acceleration magnitude. 

 
Figure 3 RTI initial perturbation spectra and linear-stability analysis 
dispersion curves [7,8]. 

Initial error-function mole-fraction profiles were perturbed by 
displacing the intermediate isosurface, X = 1/2, nominally at 
z = 0, by an amount ζ(x,y), in units of the initial profile scaling 
length.  The A, B, and C simulations were performed with 
matched initial perturbation amplitudes, each with a different 
initial ζ(x,y) perturbation spectrum (figure 3), but otherwise 
identical in every other respect.1 Case D was run with the same 
boundary conditions, but a lower initial perturbation amplitude, 
as illustrated below.  It was designed to answer whether the A, B, 
and C results were an artifact of a limited spatial dynamic range 
and to attain a higher final Reynolds number. 

Models of Rayleigh-Taylor instability mixing zone have it 
growing quadratically in time, following an initial, linear-
                                                           
1 A scaling error for σ led to an incorrect plot of the linear-stability-

analysis dispersion relation in [7]. It is corrected here and in [8]. 
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bility evolution. For a constant acceleration, g, this yields a 
cal extent of the RTI mixing zone given by, 

h  =  α A g t 2,                                          (2) 

e α is taken as an empirical constant, with values in the 
e, 0.1 < α < 0.7 [10]. 

re 4 depicts the intermediate mole-fraction isosurface 
 1/2), visualized from the results for Case C [7]. 

 
e 4 Case C intermediate isosurface, X=1/2 (green), for t/τ = 0.0, 
 and 4.63  [7]. Red: pure heavy fluid.  Blue: pure light fluid. 

re 5 plots the computed growth for the four cases. h is 
ed as the difference in heights, z, where the horizontally 
ged mole fraction is given by X = 0.99, and 0.01 [7]. 

 
Figure 5  RTI mixing-zone growth. 

an be seen, initial RTI mixed-fluid growth is well-described 
iffusion, i.e., ∝ t1/2.  A faster-growth subsequent stage occurs 
 different time for each of the three cases, reflecting 
rences in initial seeding, with breakout times from the 
sive-growth regime in accord with linear-stability theory [8].  
e late-time growth for Case C is well represented by a 
ratic, Cases A, B, and D exhibit growth with a different time 
ndence, placing the validity of the empirical model (2) and 
ope that a universal value for α may exist in question. 
rences in growth between the four cases are large, indicating 
h sensitivity to initial conditions. 

 greater differences between the three cases are found in 
ng, as measured by the amount of chemical product that 
d be formed from a stoichiometric chemical reaction 
een the two miscible fluids being mixed [7]. See figure 6. 



 
Figure 6  Simulated chemical-product fraction in RTI zone [7]. 

Differences between the four cases persist to the end of the 
simulations, to moderate Reynolds numbers, 

, 
µ

ρ hhReh

&
≡                                       (3) 

where ρ  = (ρ1+ρ2) / 2, with (Reh)max = 3700 for Case C and 5500 
for Case D. While these values are below the anticipated mixing 
transition, the flow evolved over a significant multiple of the 
initial transverse extent, i.e., hfinal / hinitial > 103.  Other measures 
also reflect high-Re behavior.  The chemical-product fraction 
tends to δp / h ≅ 0.34 [7],  a value very close to that in high-Re, 
gas-phase, chemically reacting shear layers [11]. Taylor 
microscales computed in the original interface plane (z = 0) are 
non-isotropic, with values along the vertical direction larger than 
in the horizontal plane, but straddling values measured along the 
centerline of high-Re turbulent jets [7]. 

  
Are scalar fields isotropic at small scales? 

Turbulence theories often assume that statistical quantities may 
be approximated as isotropic, yielding a considerable reduction in 
the tensor components that need to be modeled. This also stems 
from attention paid to grid turbulence, many aspects of which are 
(nearly) isotropic, and the fact that most measurements to date 
have been point measurements. Spatial data are estimated with 
the aid of Taylor’s frozen-turbulence hypothesis, with direct 
spatial or multi-dimensional information difficult to extract, or 
infer. The assumption is often that fluxes will be supported by 
large-scale anisotropy, while small scales may be approximated 
as isotropic. Yet, an isotropic field cannot support fluxes and, 
indeed, “…experimental evidence shows that structure functions 
and the derivative skewness of the scalar field do not follow 
predictions from isotropy at inertial and dissipative scales, in the 
presence of a mean scalar gradient.” [12 and references therein] 
These issues were further investigated in experiments on 
transverse jets [6]. Transverse jets are important in a variety of 
turbulent mixing and combustion contexts. They are relied upon 
to disperse pollutants from stacks in the atmosphere, sometimes 
used for effluent discharge in the ocean, and are a candidate fuel-
injection configuration for high-speed air-breathing propulsion 
devices, such as SCRAMJETs, for example. 
In the transverse-jet experiments, cuts in planes perpendicular to 
the streamwise direction permitted spatial scalar spectra and 
other scalar-field statistics to be compiled, at a fixed x / dj station.  
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surements were in the mid-span, streamwise plane (figure 2), 
he flow-transverse plane (figure 7). 

 
e 8 Two-dimensional power spectra of the scalar field of the 
verse jet at x / dj = 50. The wavenumber, k, is normalized by the 
horizontal spatial extent, δh. Contour plots in log10 increments. Top: 
1000. Bottom: Re = 10,000 [6]. 

re 8 plots two-dimensional (spatial) scalar power spectra for 
nsverse jet, downstream of the injection station, at x / dj = 50, 

re 7  Jet -fluid concentration for a transverse jet in a uniform 
stream (cf. figure 2), at x / dj = 50.  Top: Re = 1000.  Bottom: 
 10,000 [6]. 



computed as an ensemble average of spatial spectra computed 
from a succession of frames, as in figure 7, for jet Reynolds 
numbers, Re = 1000 and 10,000 (jet-to-freestream speed ratio, 
Vr = Ujet / U∞ = 10). Spatial-spectra contours are seen to be closer 
to circular (isotropic) for low wavenumbers, becoming 
increasingly elliptical at high wavenumbers. The reason, in this 
case, is traceable to the strain-rate field imposed on the small 
scales by the large-scale, streamwise vortices that dominate the 
far-field flow of transverse jets, owing to the large-scale 
streamwise vortices induced by the transverse injection. At least 
for this flow, the opposite behavior to the usual expectation can 
occur, i.e., increasing anisotropy with increasing wavenumber. 
This is illustrated in figure 9, which depicts a space-time image 
of a scalar field isosurface, i.e., c (y, z, t; x = 50 dj), compiled 
from a sequence of transverse cuts, recorded at a sufficiently high 
framing rate to meet the temporal Nyquist criterion for 
reconstructing the three-dimensional slice of the c (x, y, z, t) data. 
 

 
Figure 9 Three-dimensional, space-time visualization of an outer 
isosurface of jet-fluid concentration for a Re = 1000, Vr = 10, transverse 
jet, at x/dj = 50. Time runs along the axis of the vortices. Visualization 
was computed in collaboration with S. Lombeyda of Caltech’s CACR [6]. 

At this Reynolds number (Re = 1000), a small vortex is also 
evident, which is responsible for the left-right asymmetry in the 
flow and the slight tilt in the low-Re spatial spectrum (figure 8, 
top). At higher Reynolds numbers, only two counter-rotating 
(“kidney”) vortices appear, generating a spanwise symmetric 
mean flow about the streamwise plane of symmetry that contains 
the jet nozzle, and untilted elliptical contours of the spatial 
spectrum (figure 8, bottom). 
 
Compressibility effects 

An emerging issue in turbulence is compressibility, or Mach 
number effects on the structure and dynamics of the flow. These 
can be scaled in terms of the so-called turbulence Mach number, 
Mt = u′ / a, where u′ is the rms velocity. Little guidance in this 
regime derives from work to date, with scant experimental data to 
steer theoretical and modeling efforts. As both Re and Mt scale 
linearly with velocity magnitude, high-Mt flows are also, 
typically, high-Re flows, placing them further out of reach of 
direct numerical simulation. 
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k Re effects in mixing were documented in experiments on 
-Re shear layers [11,13,14].  These are illustrated in figure 10 
plots the normalized chemical-product thickness, δp / δ  [14]. 
 clear that this phenomenon is complex and may not be 
sentable by a single model, given the complex dependence 
e flow on initial/inflow conditions [17]. 

 
e 10 Shear-layer chemical product thickness vs. Re [14].  Dashed 
Dimotakis model [15].  Dotted line: Broadwell, Breidenthal, and 
al model [16].  Initial splitter-plate boundary layers are estimated to 
inar for Re < 105 and turbulent for Re > 3×105, or so [14, 17]. 

 

 
e 11  Rayleigh-scattering images of high-Re shear layers [18]. Top: 
compressibility flow (Mc = 0.15), U1 = 200 m/s [N2], U2 = 100 m/s 
4]. Bottom: High-compressibility flow (Mc=0.96), U1 = 1150 m/s 
 U2 = 100 m/s [C2H4].  



Experiments designed to discriminate between Reynolds number 
from Mach number effects indicate that these effects are distinct 
and responsible for different mixing regimes [13].  This 
conclusion is also corroborated by laser Rayleigh-scattering 
measurements in high-speed shear layers [18].  Two images from 
those experiments are reproduced in figure 11.  Compressibility 
is here quantified in terms of the (total) convective Mach number 
[19, 20], 
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where U1 and U2 are the high- and low-speed freestream 
velocities, and a1 and a2 the high- and low-speed freestream 
speeds of sound. 
Figure 11, top, is a low-compressibility flow, Mc = 0.15, with N2 
the high-speed freestream gas and C2H4 (ethylene) the low-speed 
freestream gas. These are density-matched but have different 
Rayleigh-scattering cross sections, permitting molecular-
scattering images of thin slices to be recorded. The image on the 
bottom is from a supersonic high-speed freestream shear layer, 
with Mc = 0.96, helium as the high-speed freestream gas, and 
C2H4 the low-speed freestream gas.   
The values quoted for Mc are useful for scaling and comparison 
purposes.  Better estimates are based on the actual convection 
velocity of the large-scale turbulent structures, Uc, and are 
defined with respect to each of the free streams, i.e. [21], 
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By way of example, at the supersonic flow conditions in the 
bottom image of figure 11, the large-scale-structure convection 
velocity is close to that of the high-speed freestream speed [11] 
and yields an estimate of Mc2 ≈ 2.4, in accord with the inclination 
angle of the (weak) oblique waves emanating from the turbulent 
zone into the low-speed freestream [18].  Since the rms velocity 
fluctuation, u′, scales with the shear velocity, ∆Ui = |Uc − Ui|, the 
turbulence Mach number, Mt, for this flow scales with (Mci)max, 
the higher of the two convective Mach numbers, with values that 
can be estimated to be in the range, Mt / (Mci)max  ≈ 0.1 – 0.3, with 
the lower values expected with increasing Mach number. 
At low compressibility (figure 11, top), well-defined interfaces 
can be seen to mark the boundary between almost homogenized 
mixed fluid and unmixed freestream fluid. For high-
compressibility flow (figure 11, bottom), mixed-fluid 
compositions are not as uniform.  Oblique shocks, generated by 
supersonic relative convection speeds of the turbulent structures 
(Mci’s comparable to, or greater than, unity), interact with the 
turbulence, generate baroclinic vorticity, and provide additional 
mixing and kinetic energy dissipation mechanisms. Not much is 
known about mixing in this flow regime, with experiment and 
theory indicating that while shear-layer growth is lower than for 
incompressible shear layers, the mixed-fluid fraction within the 
turbulent shear-layer region is higher [17, 22]. 
 
 
Modeling and simulation 
Accepting the mixing transition as a common characteristic of 
most turbulent flows highlights the need for detailed, multi-
dimensional measurements and direct numerical simulations to 
help guide theory and modeling for post-mixing-transition 
turbulent flows. The modal dimensionality of turbulence dictated 
by the minimum Reynolds number required for bona fide 
turbulence makes it unrealistic to expect that direct solutions of 
the Navier-Stokes equations can be relied upon to probe fully 
developed turbulence, and has been amply noted in the literature.  
It is also illustrated here by the computational effort required for 
the RTI Case D run. At least for flows with large density 
variations, DNS with Reh > 104 must wait for the next generation 
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computing machinery.  Similar challenges face the 
rimentalist, if fully resolved data are to be provided to guide 
el development. 
he positive side, experimental evidence suggests that flow 
olds number is a strong parameter in pre-mixing-transition 
es, but only a weak parameter in fully developed 
lence, at least away from walls.  In that regime, judicious 
Grid Scale (SGS) models may have a hope of capturing 
solved dynamics by augmenting Large Scale Eddy 
lations (LES).  Nevertheless, one should bear in mind that 
oal is to represent the notional zoomed inset in figure 1, 

, given a coarsely resolved representation that has hopefully 
ctly captured the large-scale features of the flow represented 
ure 1, left. 
ulent mixing, which is dominated by small-scale behavior, 
nts a particular challenge.  In many situations where the 
 is the turbulent mixing itself, special experimental 
iques, or theoretical and computational models must be 
oyed to address it. In others, such as Rayleigh-Taylor 
bility that is driven by density inhomogeneities, a correct 
ription of mixing is required to capture even the growth of 
RTI mixing zone. Significant differences are reported 
nding on the details of explicit and implicit modeling and 
erics.  As Glimm et al. [23] note, “differences in numerical 
pation effects (mass diffusion and viscosity) due to 
ithmic differences and differences in simulation duration are 
ominant factors that produce such different results.” 
cularly encouraging are recent SGS proposals by Pullin et al. 
7] for incompressible, uniform-density turbulent flow.  
e assume that the dynamics below resolved spatial scales 
ssociated sub-grid stresses are well represented by stretched 
l vortices of the type proposed by Lundgren [28].  These 
ces are solutions of the N-S equations and generate a –5/3 
ity spectrum.  These SGS models do not assume isotropy 

exhibit a mixing transition at ReT ≈ 100 [26], even though 
 is nothing in the structure of the SGS model to have 
ipated this.  More recently, they were successfully extended 
pture the scalar spectrum behavior for scalar fields with 

 1 [27].  
eling compressible, non-uniform flows, especially turbulent 
s with shocks, must be regarded as a current and challenging 
rch topic. Many attempts to date have relied on ad hoc 
res of the Euler equations with a variety of explicit or 

icit numerical dissipation schemes.  While many gasdynamic 
omena, especially ones dealing with shock propagation in 
rm media, can be captured by such methods, strong shock-
lence interactions and simulations represent as yet 
artered territory. 

clusions 
nt experimental and numerical-simulation results have 
dated issues in turbulent mixing and also point to significant 
enges yet to be addressed.  New and developing 
rimental techniques that can record multi-dimensional 
o-temporal data, as well as the inexorable progress of direct-
erical simulations are guiding a new level of understanding 
modeling, and can be expected to lead to further progress in 
ffing. 
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