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Abstract 
Boundary layer intermittency is one of the most 
important and interesting fluid mechanics research 
topics. Intermittency refers to the fact that at each 
point in a flow field, the boundary layer is 
alternately present or absent. The presence 
percentage of boundary layer at a point is called the 
intermittency factor I at that point. The I 
distribution versus distance from the wall is 
generally described in literature by the erf function. 
If the external layer is turbulent, at each point of the 
flow statistical quantities values of fluctuation 
velocity can be defined (Variance, Skewness, 
Kurtosis) which are characteristic either of the 
instants when the boundary layer is present or of 
the instants when the external layer is present. 
Moreover, direct measurements of these same 
statistical quantities give values that depend on 
previous ones, through not simple expressions. In 
this paper these expressions have been fully 
derived. The possibility of using simplified 
expressions of linear combination, giving as 
weights I and its complement to one, has also been 
shown. Finally these simplified expressions have 
been compared with the more complex general 
expressions, showing errors in the region of 10% 
maximum. 
 
Introduction 
The boundary layer flow is characterised by 
intermittency that originates from the presence of 
an indented interface, continuously variable, 
separating the whirling turbulent boundary layer 
fluid from the external fluid flow. Consequently, at 
each point of the flow, the boundary layer can be 
alternately present or absent. The fraction of total 
time for which the boundary layer is present at the 
considered point is defined as intermittency factor I 
at that point: it can vary between 0 and 1 
[8][3][9][1][7]. 
Experimental methods based either on thermal 
effects or on instantaneous velocity gradients 
measurements have been devised in order to reveal 
intermittency. Nevertheless, thermal effects are 
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cult to use in water flows, and gradient 
surements cannot be interpreted easily when 
external flow is also turbulent. Therefore these 
ods cannot be used in water boundary layer 
tions with turbulent external layer. 

ently the authors, who have been studying this 
 of flow for some time, devised an indirect 
od to measure intermittency, based on 

surements of local mean, Variance, Skewness, 
tosis of instantaneous velocities and 
itudinal integral length scales [6]. One of the 
theses of the indirect method was that each 

stical quantity associated with fluctuation 
city can be expressed at any point of the flow 
 weighted mean of its values at that same point, 
e presence or absence of a boundary layer; and 
the weights to be considered are respectively I 
its complement to one, that is: 
                   Z = ZiI + Z∞(1 – I)                    (1) 
re Z is a turbulence statistical quantity of 
tuation velocity (Variance, Skewness, Kurtosis 
longitudinal integral length scale) at a point in 
boundary layer, Zi is its value when the 
dary layer is present and Z∞ is its value when 

boundary layer is absent. Moreover the authors 
osed that the I distribution can be given 
ugh a modified erf function, with the presence 
 logarithmic function, to better reproduce the 
behaviour of the intermittency. 

 of this paper 
ceforth longitudinal integral length scale will 
longer be taken into account, due to its 
icular nature compared with those of the other 
stical quantities, all of which are statistical 
ents of fluctuation velocity. Model (1), in 

ion to statistical moments of fluctuation 
city, is exact if the moment Z is defined in the 
e way either when the boundary layer is present 

hen it is absent (that is Zi has the same 
nition as Z∞, even though they concern different 
nts: the first one when the boundary layer is 
ent, the second one when the boundary layer is 
nt). In particular, at each point of the flow, the 

 



fluctuation velocity (v'), should be obtained starting 
always from the general local mean velocity (v): 
this value is different from the local mean velocity 
relative only to instants when the boundary layer is 
present (vi), and from the local mean velocity 
relative only to instants when the boundary layer is 
absent (v∞). Among these three local mean 
velocities the following relation holds: 
                         v = viI + v∞(1 – I)                      (2) 
In fact it is much more interesting to obtain the 
relation corresponding to (1), but relative no more 
to Zi and Z∞, (computed as previously mentioned), 
but to new values Zii and Z∞∞ computed on the basis 
of fluctuation velocities v'i and v'∞ obtained  
initially from local mean velocities vi and v∞ 
respectively.  
Now it is clear that model (1) is correct if it 
concerns Zi and Z∞, but is only a simplified one if it 
concerns Zii and Z∞∞. Obviously the model (1) is the 
less simplified the more vi e v∞ values are alike. 
Previous papers by the authors concerned Zii and 
Z∞∞ (which are in fact more scientifically 
interesting), and model (1) was however applied, in 
order to avoid the complexity of the complete 
expressions [1], which would make the study more 
difficult at the first stage. 
In this paper two aims will be attained: 
1) the complete expressions of Variance, Skewness 
and Kurtosis, referring to Zii and Z∞∞; 
2) the discrepancy between the expressions of the 
correct model and the corresponding ones of the 
simplified model will be computed. 
 
The correct model 
In order to define the complete expressions of 
Variance, Skewness and Kurtosis the following 
should be considered: 
First of all it is clear that among v, vi, v∞, v', v'i and 
v'∞ the following relations hold: 
                              v’i = v’ +(v– vi)                    (3) 
                             v’∞ = v’ +(v– v∞)                   (4) 
Moreover, the following expression will be used: 
                                a = v∞ − vi                                        (5) 
Through (5), (2) and the I definition, it is possible 
to replace (3) and (4) by the following expressions: 
                              v’i = v’ + (1−I) a       (6) 
                               v’∞ = v’ − I a                      (7) 
Once these expressions have been stated, the 
general rules required to define the complete 
expressions of Z moments (Variance, Skewness 
and Kurtosis), referring to the corresponding 
quantities concerning instants when the boundary 
layer is present or absent (Zii and Z∞∞ respectively), 
are: 
1st) for each statistical quantity it is necessary to 
start from equation (1), and afterwards to substitute 
Zi and Z∞ with suitable definitions based on v' 
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ivalent in form but calculated at different 
nts); 
in equations obtained from the previous point, 
ust be replaced by its expression obtained 

ugh (6), referring to Zi, and by its expression 
ined through (7), referring to Z∞; 
the expressions obtained must be algebraically 
orated; 
the expressions obtained in the 3rd point must 
algebraically elaborated further in order to 
ess Zii e and Z∞∞; 
inally the expressions obtained in the 4th point 
t also be algebraically elaborated once more in 
r to obtain an expression similar to (1) but 
rred to Zii and Z∞∞ and, consequently, also the 
equent corrective terms of the correct model in 
ect of the simplified model. 
ugh these general rules the following 
essions of Variance, Skewness and Kurtosis 
 obtained. 
ance of fluctuation velocity 
 general rules, developed up to the 4th point, 
: 
      V = I Vii + (1 – I) V∞∞ + I(1−I) a2          (8) 
his case it is not necessary to develop the 5th 

t, because in (8) the expression of the 
lified model and the subsequent corrective 
s of the correct model are already clear. 
ness of fluctuation velocity 

 general rules, developed up to the 4th point, 
: 
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is expression v' has been replaced by (6) and 
(7) only in the numerator, for the sake of 
licity. 

he 5th point, the general rules give: 
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tosis of fluctuation velocity 
 general rules, developed up to the 4th point, 
: 
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Referring to v', the previous remark is still valid. 
At the 5th point, the general rules give: 
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Differences between correct and simplified 
model 
In order to verify the differences between the 
correct and simplified models, data from the 
authors' previous work were employed. 
All the experimental data were obtained from a 
boundary layer developing along a smooth flat 
bottom (flat plate) of a rectangular channel coming 
from a sluice gate. In this plant the external flow 
was naturally turbulent: but two other levels of 
turbulence could be obtained by use of grids in the 
sluice gate (a 1,25 cm and a 2,5 cm mesh grids 
were used, which caused in that order increasing 
levels of turbulence). Instantaneous velocity 
measurements were performed in four test sections 
of the boundary layer, at distances 0.15 m apart. In 
each test section more than 20 points along the 
vertical were tested, including also points well out 
of the boundary layer. At each point the 
instantaneous longitudinal component of velocity 
was measured through an LDA device, so that, 
always at each point, more than 200.000 sample 
data were collected at time intervals of 0,005 s 
apart. A more detailed description of these tests is 
to be found in [4]. 
In each test section, the boundary layer thickness 
was calculated through a best fit method between 
experimental data of mean local velocities and 
fluctuation velocity distributions, and the 
corresponding distribution laws proposed in [10]. 
That being stated, the comparison between the 
correct and simplified models can be developed in 
the following way. 
Referring to Variance, Skewness and Kurtosis, the 
following data are now available: 
1) distributions of experimental data of the Z 
moments, relative to the aforementioned test 
sections and to the three different turbulence levels 
in the external layer (for Variance see [10], for 
Skewness and Kurtosis see [6], through suitable 
elaboration); 
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xperimental values of Z∞∞ moments in the 
rnal layer, relative to the different test sections 
to the three different turbulence levels [4]; 
istributions of Zii moments, calculated through 

simplified model. These are obviously 
pendent of the turbulence level in the external 
r (for Variance see [10] through suitable 
oration, for Skewness and Kurtosis see [6]). 
lly, the I distribution, calculated through the 
lified model is available in [6]. 

articular: 
 distance from the plate, made non dimensional 
ugh the boundary layer thickness, will be called 

 I distribution is: 
re the parameter H (0,29), was calibrated 

ugh the simplified model, as already 
tioned. 

η
π

= ∫
∞−

η
−

de
2
1I

H
Yln

2

2

1 shows the Zii distributions, calculated through 
simplified model. Respectively they are: 

ance, made non dimensional through the 
ion velocity v*; Skewness; and Kurtosis. 
rring to the thickness of the boundary layer, it 
ecessary to point out that a physically based 
ness definition proposed by the same authors 
] has been chosen. This definition appears to 
articularly suitable when the external layer is 

ulent. In any case, it is suitable to recall that in 
case of an external layer without turbulence, 
definition gives a thickness value 40% greater 
 the corresponding classical definition (Coles 
 and about 50% greater than the corresponding 
calculated with the 99% rule. 
ting from the aforementioned data, differences 
 been computed between the exact Zii values, 
an be computed from the complete equations 
(10), (12), and the Zii values of fig. 1. These 
rences are shown in figs. 2, 3, 4, with regard to 
three Z moments respectively. In each figure 
e diagrams are shown, relative to the three 
ementioned turbulence levels in the external 
r. Each diagram is a mean among the data of 
ifferent test sections. 

 clear that the diagrams of figs. 2, 3, 4, only 
hly represent the values of errors due to the 
lified model, mainly as a result of the 
hness of the I distribution. 

clusions 
 boundary layer, the  relationships between the 
stical moments characteristic either of instants 
n the boundary layer is present or of instants 
n the external layer is present, and the same 
stical quantities as can be measured, are quite 
plex. However it is possible to use simplified 

 



expressions of linear combination that produce 
errors whose values are variable with the non 
dimensional distance from the plate, Y. 
In particular the simplified model produces no error 
as far as Y ≈ 0,3, due to the fact that at small values 
of Y, I takes the value of unity so that statistical 
quantities measured and calculated through either a 
simplified or complex model are equivalent. Yet 
the simplified model produces no error also at Y ≈ 
0,9 due to the circumstance that for high values of 
Y local mean velocity in the boundary layer is the 
same as the measured local mean velocity. The 
error is greatest at Y ≈ 0,7 (that is about 105% of 
the thickness of the boundary layer obtained 
through the rule of 99%). The errors  in the 
Variance are alike in the three conditions of 
turbulence in the external layer, while the errors of 
Skewness and Kurtosis are greater the lower the 
turbulence level is in the external layer . 
In the final analysis it is possible to state that the 
values of these errors (as compared with the total 
variation of the respective distributions) are about 
1% for Variance, and about 10% for Skewness and 
Kurtosis, and consequently that these errors are 
significant but not excessive. 
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Fig.1 Variance, Skewness,  Kurtosis distributions in a 

dary layer with potential external flow 
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Fig.2 Variance errors distribution 
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Fig.3 Skewness errors distribution 
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Fig.4 Kurtosis errors distribution 
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