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Abstract

A transient or water hammer event is initiated whenever a steady-
state condition in a pipeline is disturbed either by a planned
event or accidentally. When the transient reaches a leak, the
transient will be reflected and transmitted, which results in a
different transient event compared to the transient from the same
pipeline without a leak. In a previous study, an analytical
solution for the wvariation in hydraulic grade line (HGL)
expressed in terms of a Fourier series has been obtained based on
a pipeline with known initial conditions and constant boundary
conditions. Based on the analytical solution, a leak detection
method was developed previously using leak-induced transient
damping. However, The Fourier series approach is not well
suited to the case where the boundary conditions vary during the
transient event. A Laplace transform solution approach
overcomes this difficulty and is the focus of this paper.
Normalized hyperbolic governing equations for a pressure
transient in a pipeline with a leak are derived, where the
discontinuity induced by a leak is considered by using a delta
function. In addition the orifice-leak equation is linearized. The
accuracy of the analytical solution has been verified by nonlinear
numerical analyses using the method of characteristics. The
effects of a leak on pipeline transients induced by a pulse
boundary perturbation and a continuously changing boundary
perturbation are investigated in detail.

Introduction

Pipeline transients, which may be initiated by valve movement,
pump shut-down, or change in tank level, are common
phenomena in pipeline systems. The pipe flow and pressure
transients can be described by a set of non-linear hyperbolic
equations derived from the conservation of mass and Newton’s
second law of motion (conversation of linear-momentum). A
closed-form solution for these equations is impossible due to the
non-linearity of the momentum equation. A number of methods
have been developed to solve these equations analytically where
the non-linear term is either neglected [1] or linearized [7, 10],
and numerically using the method of characteristics (MOC) and
other numerical methods [4, 10]. Predominately, transient pipe
flows are studied using one-dimensional models assuming a
uniform velocity profile. The neglected two-dimensional or
three-dimensional effects are normally approximated by
unsteady-friction models [3, 8, 12] with reasonable success.

When a leak exists in a pipeline, the transients are changed
compared to the no-leak situation. Recent experimental and
numerical work at Adelaide University has demonstrated that
attenuation of transients in the pipeline due to leaks is significant.
A linear analytical solution for the transients in a pipeline with a
leak was derived by applying separation of variables [9]. The
analytical solution gives some insight into the mechanism of the
effects of a leak on pipeline transients. Based on the analytical
solution, a new leak detection method was developed using leak-
induced damping on fluid transients [9]. However, that solution
was based on constant boundary conditions and known initial
conditions, and is not valid for a pipeline with varying boundary
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conditions. The case of the varying boundary is studied in this
paper by applying a transform method, which is more general
compared to the traditional eigenfunction methods [5]. The
emphasis of this work is to investigate the effects of leakage on
pipeline transients. The friction effects can be found in previous
studies [2, 7, 10].

A solution based on initial conditions

By linearizing the friction and orifice equations, the governing
equation for the transients in a pipeline with a leak can be
expressed [9]
o’ B o’
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where x" = x/L= dimensionless distance, " =¢ /(L/a)= the
dimensionless time, L = pipeline length, a = wave speed,
k" =(H - H,)/ H,= the dimensionless head of the transient, / =

transient head, H, = steady-state head, H; = a reference head at a
tank, R= f1.Q,/2DAa= resistance term, O, = steady-state flow

rate, f'= Darcy-Weisbach friction factor, D = pipe diameter, 4 =
pipe cross section area, F, =C,4,a/ A\[2gH,, = leak parameter,
C,A; = effective leak area, H;, = steady-state head at the leak.
8(x" —x,) = Dirac delta function and x;” = x;/L= dimensionless
leak location.

L= Pipe length=1000m
H D= Pipe diameter=0.2m
a = Wave speed=1000m/s H,

—
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Figure 1 A pipeline connected with two reservoirs

For a pipeline connected between two reservoirs with constant
heads as shown in Figure 1, the boundary conditions are given by

B°(0,6)=0 and &' (1,t)=0 2)

and the initial conditions of the pipeline transients may be
defined as

B 0= and LD p () 3)
t

in which a;-(x )and b;-(x ) are known piecewise continuous

functions in the range of 0<x*< 1. By applying a Fourier
expansion [9], the solution to Eq. (1) subject to boundary and
initial conditions expressed by Egs. (2) and (3) is

K (x" )= Z {e’““R”L)’* [Aﬂ cos(nat’ )+
n=1 (4)

B, sin(nm*)]sin(mzx*)}
where R =F, sin’(nmx,) (n=1,2,3,...) (5)

is the leak-induced damping factor for harmonic component 7.
The Fourier coefficients, 4, and B,, are



A4, :2£a,c(x*)sin(n7zx*)dx* 6)

(R + RnL)An (7)
nmw

Note that the steady-state friction damping coefficient, R (=

fLOy2aDA), of Eq. (4) does not depend on 7, indicating that the

components are exactly exponentially damped by pipe friction,

and that the friction damping for all components is equal. In fact,

B, = 2 £b,c(x*)sin(nm*)dx* +
nw

e ™ can be taken outside of the summation in Eq. 4). In
contrast, the leak-induced damping factor, R,, of Eq. (5),
depends on n and is different for each component; it cannot be
removed from the summation sign in Eq. (4). However, leak
damping is exactly exponential when applied to a distinct Fourier
component and is independent of the measurement position x~
and the transient event. Based on this property a leak detection
technique, which is able to detect, locate and quantify a leak in a
pipeline, has been developed [9].

A solution for time-dependent boundary conditions

The solution given in Eq. (4) is based on known initial
conditions for the pipeline transient regardless of the initiation
process of the transient. However, it is more practical to measure
the time varying initiation process rather than measure the
transient distribution along a pipeline. Due to the limitation of
the separation of variables technique in solving partial
differential equations with time-dependent boundary conditions,
a solution considering the time-dependent initiation process is
given using the Laplace transform method.

If a pipeline transient is initiated from a steady state condition by
a downstream perturbation process, the governing equation is Eq.
(1) and the corresponding boundary and initial conditions are

BC. h'(0,t)=0and A (1,t7 )= f(¢") ®)
1C. h"(x",0)=0and w =0 )
t

in which f{r") = dimensionless head at the downstream end of the
pipeline.

Pipeline without a leak
For a leak-free pipeline, F; = 0, and applying Laplace transforms
to Eq. (1) gives
27y *

H
IHE,S) (x2 ) (52 (" 5)—sh" (x"0) —ah (x ,0)

o ot”

+2R[sH(x",s)-h"(x",0)]

Considering the conditions in Eq. (9), Eq. (10) is expressed as

: (10

o H(x" ~ . ~ .

%zszH(x ,8)+2RsH(x ,s) (11)
Ox

Applying the Laplace transforms to Eq. (8) gives

H(0,5)=0,and H(l,s)=F(s) (12)

in which F(s) =L{f(t")} = Laplace transform of {1").

For a frictionless plpe R=0, and the solution for Eq. (11) is

H(x ,8) = Ce”‘ +C,e™ (13)
Substltutmg Eq. (12) into Eq. (13) and solving gives
F
RO ) and ¢, ==F) (14)
e’ —e e’ —e”’

Therefore, Eq. (13) can be expressed as
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ﬁ(x* , S) - Z ['F\:(S)e—s(ZnJrl—x*) _ F(S)e—s(ZrHHX*) ] (15)
n=0
Applying the inverse Laplace transform to Eq. (15) gives
h(x",t") = Z{f[t* —Q2n+1-xHULt" - (2n
) (16)
+1=x)]=fIt =Cn+1+x)HU[E —QCn+1+x)]}
where U(?) is the unit step function defined as
U = 0 t<0 (7
Il >0

Pipeline with a leak

For a pipeline with a leak, the pipeline can be considered as two
portions divided by the leak with a small neighborhood 2¢& as
shown in Figure 2.

X'=0.0 x-e =10

v

Figure 2 A pipeline with a leak

x,"+€

Integrating Eq. (1) over a small neighborhood on either side of
the leak gives

JjL+ga h _ '[L+5(a h
L= ax L—¢€ at

+ 1. FL—5(x —x; )dx"

1~ €

+2R —)d
o (18)

Letting & approach zero, the ﬁrst integral on the right hand side
of Eq. (18) is zero. Thus Eq. (18) becomes

ah* F, oh (x* ,1)
ox

The governing equations for the two frictionless pipe sections on
either side of the leak are

.
X, +e

__— (19)
X =x,

X, —& ot

24 * 24 %
0 h12 _9 h12 (0<x"<x,£>0) (20)
ox ot

27 * 2
0 h22 _9 hg (, <x'<1,£>0) 1)
Oox ot
For a small leak,
ho(x, Y =hy (x, ,t7) 22)

Application of Laplace transforms to Eqs. (20) and (21) yields
subsidiary equations

H (x",s)= Cle”* + Cze"‘"* (23)
I-NI2 (x",s) :C3e‘”* +C4e"”* (24)
Applying Laplace transforms to Egs. (8), (19) and (22) gives

H,(0,5)=0 25)
H,(1,5) = F(s) (26)

0 = ~

—H,(x,", ,s)=F sH,(x ,s) (27)
ﬁl(xL*as):ﬁz(xL*as) (28)

Eliminating the four coefficients in Egs (23) and (24) by solving
Egs. (25), (26), (27) and (28) gives the subsidiary equations



- . _ 2ﬁ(s)es+25xz +sx%
H(x ,s)= o e o I +
27" (1—e™ )+ F, (e™ —e™ )e™ 1)

- - (29)
2F(S)es+2st —sx
2€2SXZ (1_eZs)+FL (eZ.vxZ _els )(eZSXZ _1)
- . F s+sx% F —-F 25)(2 -2 2sxz
o =—twe _Fihe 723 )
SX[ (1 528 sxp 28 SXp
2et (1=e™ )+ F, (e e’ )(e 1) (30)

F(S)eﬁlsxz —sx* (FLeZsz _ FL + 2)

262.5'9(2 (1 _ eZS ) + FL (eZSXz _ eZS )(eZSXZ _ 1)

By multiplying both the numerator and denominator by
[262”Cz (1-e*)]" and rearranging, Eq. (29) is expressed as
Fs)(e ™™ —e™)
(1-e™)
F, (ezsx’i _e¥ )(ezsx’i 1)
22 (1-e)
For a small leak, F; < 1.0, then the second term in the

denominator is less than 1.0. By applying a series expansion, Eq.
(31) is expressed as

F(s)e "™

(1-e™)
z( 1) F (e 2_st eZs )n (eZsz
n Zﬂst (1 825)

Applying a series expansion to the denominators of both parts of
Eq. (32) gives

I‘Il(x ,8) = zzw —s(142i=x%) _ =s(l42i+x%)
n=0 i=1
" (33)

0
Z(_e—s(2+2/—2xL) + e—s(2+2j) _ e—s(Z/+2xL) + e—sZ_])

J=0

H (x",s)= 31

1+

_ efs(lﬂ*) )

H,(x"s)=

(32)
—1)"

Since the product of any two exponential functions is still an
exponential function, Eq. (33) may be expressed as

-, = (=1)"F/F
9=y, CHIEE
w . (34)
z :Slgn [e—(al-j—x )s _ef(a,-jﬂc )s]
i=0
j=0

in which the values of a;; and Sign representing the positive (+)
or negative (-) of each term can be determined by Eq. (33).
When n = 0, Eq. (34) is the same as Eq. (16) which is the
solution for the transients in a pipeline without a leak. Applying
the inverse Laplace transform to Eq. (34) gives

h,*(x*,t*):ii( ) Sign{f(t" -a, +x)

n=0 i

(3%)

Ult-a; +x*)—f(t —a; —x Ut -a; -x)}

The transients (0 < x* < x;°) in a pipeline with a leak can be
calculated using Eq. (35).

Applying a similar procedure, Eq. (30) is expressed as
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n=0 i=1
[(e—s(1+2i—x*) _e—s(1+2i+x*)+i(e—s(nzi—x*) n e—s(1+2i+x*))

- . . (36)
__L(e*S(HQHZXL —x )+ ef.v(l+2i72xL +x ))]

2

o0
Z (_e—s(2+2]—2xL )+ efs(2+2‘/) _ e—s(Zj +2x,) + eﬂz" )]1
=0

An expression of the transient in the portion of the pipeline
to the right of the leak (x,” <x" < 1.0) is given as

w0 = ZZ[ jSzgn{[f(t —a;+x")

n=0i=0
j=0

Ut-a;+x)= f(" —a; =X U —a;—x)]

by +x U~ by +x)

by +x )+ f(( - 37

—L[f(t* -

U =by+x" )]——[f(t —cj +x W —cj +x)

+ (" =y +x U ~by + 2]

where the values of a;;, b; and ¢;; are determined by Eq. (36).

Comparison with a non-linear numerical solution

When deriving the governing equation Eq. (1), the nonlinear
orifice leak equation was linearized [9]. The accuracy of the
linearization is verified in this section by a comparison of the
above analytical solution with results calculated numerically
based on solving the non-linear equations using the method of
characteristics, in which the non-linearity of the friction term is
approached by a second-order difference scheme [11].

08— T T T
[ (1) without a leak

i

x* = 0.50 (analytical)
,,,,,,,,, x* = 0.25 (analytical)

—e—x*=0.50 (humerical)

-0.8 [~ e x* = 0.25 (numerical) |

—e—x*=0.50 (numerical)
----&--- x* = 0.25 (numerical)

x* = 0.50 (analytical)
""""" x* = 0.25 (analytical)

-0.8 [
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Figure 3 Transients calculated using the analytical solutions and
the method of characteristics (numerical and analytical results
match almost exactly)



If the boundary condition given in Eq. (8) is a half-sine wave
defined as

0 <0
F()=4054sin(m”) 0= >1 (38)
0 i >1

For the pipeline shown in Figure 1 (H; = H, = 25.0), transients
calculated using the numerical method and the analytical solution
expressed in Eq. (16) at two measurement locations x* = 0.5 and
x" = 0.25 are presented in Figure 3a. When a leak of Cy4;/4 =
0.001 is presented at xL* = (.75, the transients at the same
locations calculated using the numerical method and the
analytical solution expressed in Eq. (35) are presented in Figure
3b. The analytical solutions are almost identical to the non-linear
numerical results for both cases. In the analytical solution of Eq.
(35), only terms of n = 0, 1, 2 were included since the
magnitudes of higher terms are very small.

Transients induced by continuously changing
boundary conditions

If the boundary condition given in Eq. (8) is a continuously
changing boundary perturbation, for example a sine function
defined as

F@") =sin(Am") >0 (39)
the transients in a pipeline with and without a leak can be
calculated using the analytical solution of Egs. (16) and (35) (or
Eq. (37)). By using two different boundary perturbation
frequencies 4 = 1.0, and 4 = 1.5, the calculated transients
measured at x™ = 0.5 are plotted in Figure 4.
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Figure 4 Transients induced by continuously changing boundary
conditions using the analytical solution

When 4 = 1.0, as the frequency of the boundary perturbation is
equal to the natural frequency of the pipeline, a resonance
condition is observed. The presence of the leak reduces the
amplitude of the resonance. However, it has little influence on
the overall shape of the pipeline transient. For the case of with a
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leak, the transient stops growing and a steady oscillatory flow
appears after about 20 periods (/> 40.0). When 1 = 1.5, a
constant periodic transient with a period of T" = 4.0, is observed
in a pipeline without leak. The presence of the leak not only
reduces the amplitude of the transient, but also changes the shape
of the transient significantly. Compared to the transient in a
pipeline without a leak, an additional transient peak is observed.
In each cycle, the additional transient peak keeps increasing in
magnitude with time while the primary transient peak keeps
decreasing. After about 50 periods (" > 200.0), the primary and
the additional transient peaks reach the same level, and a steady
oscillatory flow with a smaller magnitude (about two thirds of the
initial primary peak value) appears. Further studies by using
different leak locations and leak magnitudes (not included here
due to space limit) shows that the magnitude of the steady
oscillation under different perturbation frequencies has a unique
pattern related to the leak location, and is therefore a good
indicator for leak detection.

Conclusions

Analytical solutions of the linearized equations, both with and
without a leak, have been derived using a Laplace transform
technique that allows for variable boundary conditions. The
analytical solution has been shown to be very accurate when
compared to the numerical results obtained from the method of
characteristics, which include the non-linear friction terms. The
analytical solution shows that under a variable boundary
perturbation, the influence of a leak on the pipeline transients
depends strongly on the frequency of the perturbation. However,
the presence of a leak always results in a steady oscillatory flow
of a different magnitude compared to the case of without a leak,
and the magnitude of the steady oscillatory flow is a good
indicator of leak location.
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