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Abstract

Curved mixing layers support instabilities in the form of
longitudinal vortices aligned in the direction of the flow;
these are similar to the Görtler vortices known to exist
in curved boundary layers. Vortices of a similar ilk are
produced by an unstable temperature stratification. As
in Otto, Stott & Denier [8], by making the Boussinesq
approximation we may study the heated mixing layer
without introducing full compressibility. Our study is
aimed mainly at the mixing layer created by a mountain
lee wave, and the effects the longitudinal vortices have
upon the flow.

If one plots a neutral curve in the wavenumber–Görtler
number (G, representative of the level of curvature)
plane, two regimes are apparent downstream. One is an
inviscid area of growth where G � 1 and the spanwise
wavenumber is O(1). Here, inviscid vortices develop over
short streamwise distances and are governed by a modi-
fied form of the Taylor–Goldstein equation. In the second
region, known as the right-hand branch, the wavenumber
is also large and viscous effects become important.

Introduction

Due to the marked similarities between boundary and
mixing layers the underlying theories of the two flows
are closely linked; indeed, the only real differences from a
mathematical point of view are the boundary conditions.

Görtler [1] showed that the boundary layer present over
a concavely curved surface will support counter-rotating
longitudinal vortices aligned in the direction of the flow,
known to have a spanwise wavelength comparable to
the boundary-layer thickness. This important boundary-
layer instability was first modelled in a self-consistent
manner by Hall [2] who discovered that non-parallel ef-
fects in the basic flow are very important and must not
be disregarded. When considering the linear theory for
vortices with O(1) wavenumbers, the perturbation equa-
tions are shown to be parabolic in x (the downstream
coordinate) and so can be solved using an Euler march-
ing scheme. Neutral curves can then be generated in
the ax–Gx plane, where ax is the local wavenumber of
the vortices (ax1/2) and Gx is the local Görtler number

(Gχ(x)x3/2). Here the Görtler number, G, is a dimen-
sionless number that measures the ratio of centrifugal
to viscous forces and the function χ(x) merely contains
all the x-dependence of the curvature. These neutral
curves are found to be non-unique in the sense that the
growth or decay of an imposed disturbance depends both
on the method and location of its imposition. However,
the right-hand branch of the neutral curve is unique (for
a given set of parameters) and an asymptotic solution
may be calculated for it.

Hall & Morris [4] made the important discovery that the
boundary layer over a heated, yet flat, plate is also un-
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e to longitudinal vortex structures which develop in
reamwise direction. Whilst akin to Görtler vortices,
are a result of buoyancy rather than centrifugal ef-

This discovery led Stott & Denier [13] to study
ompeting aspects of buoyancy and curvature in the
dary layer. It was found that a large enough convex
ture would overcome the destabilising effect of an
bly stratified temperature profile, and vice versa.

s been shown experimentally [10] that the curved
g layer possesses a centrifugal instability similar to
örtler instability of the boundary layer if the centre-
urvature is inclined toward the faster stream. This
vation was reproduced theoretically [7], and tem-
ure disparities between the two streams considered
nce more, it was shown that a stably stratified basic

could support longitudinal vortex instabilities if ei-
sufficiently concave curvatures or free-stream speed
rities were present.

ever temperature disparities have been mentioned
, the Boussinesq approximation has been made.
essentially corresponds to ignoring all density vari-
s except in the term of the buoyancy force that
des gravitational acceleration, resulting in the gov-
g equations being roughly the same as in the in-
ressible case, but with the inclusion of an energy
ion and a term GrT in the y-momentum equation.
Gr is known as the Grashof number, a dimension-
uantity which gives the ratio of buoyancy to vis-
effects, and T (x, y, z) is the dimensionless tempera-
The Boussinesq approximation is widely recognised
ing particularly valid in atmospheric applications.
g layers have been studied in the fully compress-

imit [9, 11] and results are in broad agreement with
obtained using the Boussinesq approximation.

ntent, therefore, is to study a curved, heated mixing
in both the inviscid and viscous regimes using the
sinesq approximation. We choose to concentrate on
ixing layer present within a mountain lee-wave [12].

e occur when the wind blows over a hill or moun-
As the air passes over the obstruction it is forced

rds above its equilibrium position. Descending on
e side of the hill, the combined effects of buoyancy
ravity cause a damped oscillation. This wave may
d for tens or even hundreds of kilometres, with an
itude of anything up to about twelve kilometres and
elength large enough to be seen on a satellite pic-
clouds often form in the peaks of a lee wave, making
visible). The mixing layer occurs between the fast

ng air in the wave and the much slower moving air
dy present on the lee side of the mountain. Obvi-
curvature plays an important role, arising from the
sic curvature of the wave itself, as do differences in
erature between the two air masses and so instabil-
of the form described above are expected. Figure 1
hotograph of a cloud in the peak of a lee wave. The



base of this cloud is indented with large features that may
be caused by vortices similar to those described above.
These structures are very large and could cause a haz-
ard to aircraft. They would be even more dangerous if
conditions were not conducive to cloud formation, ren-
dering the vortices invisible to both the naked eye and to
conventional radar.

Figure 1: The rippled base of a lenticular cloud situated
in a peak of a lee wave created by Table Mountain. The
large indentations are possibly created by longitudinal
vortex instabilities of the mixing layer, the smaller ripples
are caused by a secondary instability.

Formulation

Assume that the temperature of the lower stream at mi-
nus infinity is given by T∞ and the velocity by U∞; in the
case of the mountain lee-wave, these would be O(102K)
and O(10m/s) respectively. With the addition of a suit-
able length scale, L, (e.g. the wavelength of the wave,
104m) and a mean density ρm ( 1kg/m3) the flow quan-
tities are non-dimensionalised in the usual manner. Note
that a rescaling onto the mixing-layer thickness, Re−1/2,
takes place in both the vertical and spanwise directions.
This is due to experimental evidence [10], which suggests
that the wavelength of the vortices is comparable to the
mixing-layer thickness. The Reynolds number, Re, is of
the order of 109 in this case. Finally, we add a small per-
turbation to the basic flow and assume that this motion
is periodic in the spanwise or z direction.

(u, v, w, T ) = (ū, v̄, 0, T̄ ) + ∆(ũ, ṽ, w̃, T̃ )eiaz + O(∆2),

p = p̄0 + Re−
1

2 p̄1(x) +
Gr

Re
p̄(x, y) +

∆

Re
p̃eiaz + O(∆2),

where all variables are functions of x and y alone unless
otherwise indicated. The quantity ∆ is considered to
be infinitesimal and the non-dimensional number Gr is
known as the Grashof number, given by

Gr =
gαL3T∞

ν2Re
3

2

.

Here α is the coefficient of volume expansion, g the ac-
celeration due to gravity and ν is the kinematic viscosity
of the fluid. For the parameter values given above, the
Grashof number takes a value of size O(106). Note that
we have also rescaled the pressure at this stage, follow-
ing the scalings suggested by Hall [3]. The use of these
pressure scalings allows one to increase the effect of buoy-
ancy on the system; however, we shall not be concerned

with
A th
choic
and i
magn

The

Takin
∞, w
boun
suita
final
which
fusivi
this
progr
this
simila
will b
three
tine c
sure
assum
form
not a

In pr
strea
2, wh
of tw
unsta

Norm

In th
curve
distu
numb
velop
visco
will b
in cer

The i
fusion
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this here and will therefore let Gr/Re tend to zero.
ird non-dimensional entity is also created by this
e of scaling. This is known as the Görtler number,
s given by G = 2Re1/2κ ∼ O(106) where κ is the
itude of the curvature of the centreline.

Basic Flow

g the leading-order terms only as we let Re →
e find that the basic flow must satisfy the usual
dary-layer equations, coupled with p̄y = T̄ and a
ble energy equation. This energy equation includes a
non-dimensional number, the Prandtl number (Pr),

is the ratio of momentum diffusivity to heat dif-
ty (≈ 0.72 for air at room temperature). However,
will be approximated to unity to allow analytical
ess. A similarity solution will now be used to solve
system of partial differential equations, using the
rity variable η = yx−1/2. The Lock [5] condition
e used as the fifth boundary condition. Two of the
equations may be solved using a Runge–Kutta rou-
oupled with a secant shooting method, and the pres-
may then be solved for using the Trapezium Rule,
ing a reference value at minus infinity. In fact, the

of the pressure profile is fairly arbitrary since it does
ffect the perturbation equations at all.

oducing all the results presented here, the free-
m velocity of the upper stream, βu, was taken as
ilst the free-stream temperature, βt, will take one
o values; 2 for a stably stratified layer or 1/2 for an
bly stratified layer.

al-Mode Analysis: Inviscid Modes

is section we shall consider the stability of the
d, heated mixing layer when the wavenumber of the
rbance, a, is order one and the Görtler and Grashof
ers are both large. In this regime, instabilities de-
over a relatively short distance downstream and so

sity is unimportant. A local normal-mode analysis
e used to determine growth rates of the disturbance
tain parameter regimes.

mportant terms (streamwise advection, normal dif-
and buoyancy) must be balanced. Therefore the

er number is written as G = G0 |Gr| + . . . , and the
ity and temperature components of the disturbance
e

, ṽ, T̃ ) = (u0, |Gr|
1

2 v0, T0) exp

�
|Gr|

1

2 � β̂(x)dx � .

the variables with a subscript zero are functions of
ormal coordinate, y, alone. The spatial growth rate
anded in terms of the Grashof number as

β̂(x) = β0(x) + |Gr|−
1

2 β1(x) + . . . .

these scalings and taking the limit as Gr → ∞,
odified Taylor–Goldstein disturbance equation is

ned, namely

v0yy + � a2(G0ūūy + β2
0 ū2 − T̄y) + β2

0 ūūyy � v0 = 0,

e a subscript y denotes a derivative. This equation
een derived previously in the context of the bound-
ayer [4, 13], and in the mixing-layer case [8]. It is
red that the disturbance must die away to nothing
e extremities of the system, therefore the boundary
tions are v0 → 0 as y → ±∞. The system is then



solved for the eigenvalue, β0, using finite-element tech-
niques coupled with a secant shooting method, imple-
menting the normalisation techniques of Otto & Denier
[6]. The amount of curvature may be controlled by vary-
ing the scaled Görtler number, G0, and different tem-
perature stratifications may be introduced by changing
the value of βt. This method of varying the upper free-
stream temperature is used in favour of changing the sign
of the Grashof number (which is chosen to be positive)
since it provides control over the degree of stratification
as opposed to just whether the flow is stably or unsta-
bly stratified. Finally, as mentioned before, the Prandtl
number will be taken as unity.

We begin with a stably stratified basic flow, that is one in
which warm air lies above cooler air. Figure 2 shows how
the growth rate, β0, changes with the vortex wavenum-
ber, a, for varying degrees of curvature. These growth
rates correspond to the most unstable mode in each case.
A positive value of the Görtler number corresponds to
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Figure 2: Growth rate vs. wavenumber for a stably strat-
ified basic flow (βt = 2) with Pr = 1 and varying degrees
of curvature. The dotted lines represent the asymptote
to the maximum growth rate in each case [8, 14].

concave curvature, i.e. the centreline curving up into the
faster stream, whilst a negative value corresponds to con-
vex curvature. A zero Görtler number, therefore, corre-
sponds to no curvature. No solutions could be found
for integer values of G0 less than one. In fact, it is re-
quired that the scaled Görtler number must be greater
than one half for longitudinal vortex instabilities to per-
sist for these parameters, [14]. If one compares figure 2
to the results given [8] for the hyperbolic tangent basic-
flow profile, one finds that the maximum growth rates are
slightly smaller when the similarity solution is used for
the basic flow. This disparity increases with the Görtler
number, but the results are qualitatively the same in both
cases.

Figure 3 again shows how the growth rate, β0, changes
with the vortex wavenumber, a, for varying degrees of
curvature. However in this case the basic flow was un-
stably stratified (βt = 1/2). Note that now a solution
could be found for G0 = 0 and that overall the maximum
growth rates are considerably larger. Indeed, it may be
shown [14] that instabilities are present for all Görtler
numbers above −1/2. Therefore the unstable stratifica-
tion destabilises the flow, and is sufficient to overcome
the stabilising influence of small convex curvatures.
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e 3: Growth rate vs. wavenumber for an unstably
fied basic flow (βt = 1/2) with Pr = 1 and varying
es of curvature.

stream Development of Disturbances

ow consider the downstream development of dis-
nces at both O(1) wavenumbers (inviscid regime)
arge wavenumbers (viscous regime). Beginning with
imensionless, rescaled governing equations, both the
ure and the spanwise velocity may be eliminated.
leaves a system of equations which are parabolic in
treamwise coordinate, x, opening themselves to a
ion via a Crank–Nicolson marching scheme coupled
a standard finite-difference method in the normal
irection [7, 14]. An initial disturbance is required to
the scheme off. The form of this is fairly arbitrary
nce it does not affect the right-hand branch of the
al curve and so the disturbance chosen is

= [5 + 2(η − η̄)2]e−(η−η̄)2 , ṽ = 0, T̃ = 0.

η̄ is the centre of the imposed disturbance. In the
s below the disturbance was placed in the lower

m, with η̄ = −5. The evolution of this disturbance
hen be measured via an energy function,

E(x) = � ∞

−∞

(ũ2 + T̃ 2)dη.

this a spatial growth rate is defined as

σ(x) =
1

E

dE

dx
+

1

2x
,

neutral point is defined as the value of x where
= 0, i.e. the transition point between growth and
. To plot a neutral curve two quantities known as
cal Görtler number and local wavenumber are cal-

ed; these take into account the spreading of the mix-
yer as we march downstream. During the plotting
e neutral curve these are evaluated at the neutral
. The x-dependence of the curvature, χ(x), is taken

x/x̄ in all cases. As before, the Prandtl number will
ken as unity, and the upper stream will always be
astest with βu = 2. Once again the stratification
e basic flow will be controlled by varying βt whilst
ng the Grashof number fixed and positive. Since the
of a large Grashof (or equivalently Görtler) number
ot been taken, the magnitude of Gr becomes impor-
In the results presented here the Grashof number

hosen to be unity but this may be varied at will.

we shall consider only concave curvatures, that is
0, although the theory may equally be applied to



convex curvatures. Figure 4 shows neutral curves calcu-
lated for a range of concave curvatures, with an unstably-
stratified basic-flow profile. It is found that, no matter
what value of the Görtler number is used, the right-hand
branch of the curve always lies in the same position.
This fact may also be proved analytically; see [15] for de-
tails (in fact the analytical asymptote to the right-hand
branch has been included in the figure as a dotted line).
It is expected that sustained growth will also be found in
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Figure 4: Neutral curves for an unstably-stratified flow
and varying concave curvatures.

this system at small levels of convex curvature — these
are known as thermal modes [9] since they are driven
purely by buoyancy. A similar situation is found when
the stratification is stable, although in this case the right-
hand branch is moved slightly to the left by the effects
of buoyancy (nevertheless the neutral curve still remains
‘open’). No thermal modes will be present, however at a
small but finite value of the Görtler number growth is no
longer sustained as buoyancy overcomes the centrifugal
effects, and the right-hand branch moves so far to the left
that the curve becomes closed.

Conclusions

We have studied the curved, heated mixing layer in the
context of a mountain lee-wave, making use of the Boussi-
nesq approximation. It was seen that when the Görtler
and Grashof numbers were large but the non-dimensional
wavenumber was order one, the disturbances develop over
relatively short streamwise length scales. In this inviscid
regime the disturbances are governed by the modified
Taylor–Goldstein equation, solved using a similarity so-
lution to represent the basic flow. It was found that a
stable temperature stratification can outweigh the desta-
bilising influence of a concave curvature; the converse is
also true for an unstable stratification and convex curva-
ture.

The downstream development of disturbances was then
studied using a Crank-Nicolson marching scheme in the
x-direction. Neutral curves were presented for varying
degrees of concave curvatures, and the observation made
that the magnitude of the Görtler number has no effect
upon the location of the right-hand branch (so long as
growth is sustained).
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