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Abstract

Two point space-time correlations of velocity fluctuations
have long been viewed as containing a wealth of informa-
tion about the geometric and statistical structure of ed-
dies in turbulent flows. In this paper, an attempt is made
to interpret these measurements in light of Townsend’s
attached eddy hypothesis. Both numerical (DNS) and
experimental data are considered. The experiments were
carried out at two different Reynolds numbers in order to
interpret the Reynolds number effects in terms of eddy
geometry. The DNS data set comes from the channel flow
simulation of Moser, Kim & Mansour[5]. A simulation
based on the attached eddy hypothesis tests a conjec-
ture for certain geometric and dynamic properties of the
constituent eddies, by comparing the statistics gathered
from experiment and DNS.

Introduction

Two point space-time correlations of velocity have been
recognized as a potential tool for the eduction of the or-
ganized events or the coherent structures. While vari-
ous opinions exist as to the exact definition of coherent
structures and the details of their geometric, kinematic
and dynamic characteristics, the prevailing consensus is
that coherent structures play a dominant role in trans-
port phenomena in turbulent flows. In this paper var-
ious aspects of two-point velocity correlation measure-
ments are examined in light of the attached eddy model
of wall turbulence, first proposed by Townsend[10] and,
later realized into a phenomenological model by Perry &
Chong[7]. Since then, this model has been scrutinized
and refined by Perry & coworkers ([6, 8]) and the model
has been found to be successful in providing a framework
in which to interpret the mean statistics in wall turbu-
lence. However, this work was primarily confined to sin-
gle point statistics like mean velocity, Reynolds stresses
and spectra. The major aim of this paper is to interpret
two point statistics in the spirit of the attached eddy
model.

Starting from the equations of motion, Theodorsen[9],
with some intuitive arguments, proposed that a turbu-
lent shear flow consists of horseshoe-vortices inclined in
the flow-direction at an average angle of 45°. These
ideas are consistent with the attached eddy model of
Townsend[10] where a turbulent boundary layer is viewed
as being composed of a range of geometrically similar
(attached) eddies originating from the wall, with rep-
resentative lengths scaling with the distance from the
wall. Later, Head & Bandyopadhyay[3] showed by very
convincing flow-visualization studies with smoke that a
turbulent boundary layer appears to consist of a ‘forest’
of hairpin vortices which lean in the downstream direc-
tion at approximately 45°. These vortices may loosely
be termed (attached) eddies or simply eddies. Recent
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studies by Adrian and coworkers using high resolution
planar PIV measurements ([2, 1]) have revealed that the
boundary layer is thickly populated with hairpin vortices
which appear in groups (packets). Adrian, Meinhart &
Tomkins[2] showed that the structural information con-
tained in the two-point correlation can be associated with
the presence of hairpin vortex packets. In spite of minor
differences in the details of the interpretation, this can be
regarded as the most convincing experimental evidence in
support of the attached eddy model. In a complementary
computational study, Marusic[4] showed that by incor-
porating the scenario of packets into the attached eddy
model, some temporal statistics observed in a boundary
layer can be validated for the region of the flow where
the logarithmic law of the wall holds. In this paper ex-
perimental and computational investigations will be pre-
sented in an attempt to explain the characteristics of var-
ious aspects of two point correlation measurements, in-
cluding the Reynolds number dependence of these statis-
tics and the geometric structure of the eddies. The focus
of the study will be in the outer region of the flow, de-
fined here tentatively as the outer 80% of the boundary
layer thickness.

The Experiment

In this paper, we define x, y and z as the stream-wise,
span-wise and wall-normal directions respectively; while
the fluctuating velocities in these directions are denoted
by u, v and w. Any length scale ¢ is normalized by the
boundary layer thickness d., if not otherwise stated, and
denoted as £* = £/§.. The experiment was carried out in
a nominally zero pressure gradient, open return, blower
type wind tunnel having a working section of 940 mm
x 388 mm and a length of 4400 mm, with two normal
hot-wire sensors as shown schematically in figure 1. The
lower probe will be referred to as the probe A, and the
upper one as probe B. For all measurements the stream-
wise separation between the probes (Az™*) was kept at
zero, while various wall normal separations (Az*) were
used. Two flow cases with Re, = u,d./v equal to 1655
and 4705 were considered. Here wu., is the friction veloc-
ity and v is the kinematic viscosity. With reference to
figure 1, the coefficient of two-point space-time normal-
ized cross-correlation R 45 of the fluctuating velocities at
A(z%,yh, 24, t) and Bz + Az™ yh + Ay™, 24 + Az t+
T), can be written as
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where ua and up represent the fluctuating components
of the stream-wise velocities at A and B respectively, T
represents the time-shift parameter and overbars denote
ensemble time averages. Although the use of Taylor’s
hypothesis in flows with strong shear has been the is-

sue of much debate, Uddin, Perry & Marusic[11] showed
that when Taylor’s hypothesis is used in transforming a

RAB[£T47y1*47 Zj47 A$*7 Ay*vAZ*zT] =
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Figure 1: Schematic of experiment and definition of the
terms.

temporal-shift 7 to a spatial-shift Az in two-point cross-
correlation measurements, an inappreciable error is en-
countered. Now using Taylor’s hypothesis, and choosing
the position A as the origin of the coordinate system,
with Ay*=0 always, we can write (1) as:

uUaA UBp
Vi ub
The non-dimensional parameter £ can be defined, in
terms of U,, the convection velocity, and d., as

RaBl¢,AzZ"] = (2)

* UC
€ = Az" — Té . (3)

For convenience, let & denote the special case when
7 =0, ie. & = Az". Note that for all results to fol-
low, a constant convection velocity equal to 82% of the
mean free-stream velocity is used (as suggested by Uddin
et al.[11]).

The Attached Eddy Computation

In general, the induced stream-wise velocity field, U, due
to a representative eddy of scale § and its image in the
wall can be written as
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where Uy is the characteristic velocity scale. This veloc-
ity field can be computed using the Biot-Savart integral.
A Gaussian distribution of vorticity within the core of
the vortex filaments is assumed. Let t¢a[k1d,y/0,2/d]
and Yp[ki10,y/d, z/J] denote the one dimensional Fourier
transform (in the stream-wise direction) of the fluctuat-
ing components of the velocity functions fa and fg at
A and B respectively. Then, following the analysis given
by Marusic[él}, the normalized correlation Rap can be
written as:

Riapléo, Az"]
/R4 410,0] R’ 5[0,0]

Rapléo,Az"] = (5)

where R/, 5 is defined as

Rasléo, A7) = 58 [ [% [ w5 os Q2] x

D[] 5 d(3) dé d(k:16) (6)

where the asterisk denotes a complex conjugate, and A\,
and A\, are geometric constants relating to the random
distribution of eddy length scales in the boundary layer.
The limits ;1 and é. denote the smallest and the largest
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Figure 2: Sketch of a simple IT eddy.

length scales considered which are assumed to be equal to
100v/U; and the boundary layer thickness respectively.
The functions Q and D are weighting functions as defined
in Perry & Marusic[6]. @ accounts for the variation of
velocity length scale for different §’s, and D accounts for
the departure of the eddy length scale distribution p.d.f
from a -1 power law and how the p.d.f on the (z,y,0)
surface varies with 4.

Although the numerical simulations were carried out with
several eddy geometries, results corresponding to a sim-
ple eddy geometry, referred to as a [T-eddy (as in figure 2),
will be presented. This simple eddy consists of two pre-
dominant types of structure; there are two rods of vortic-
ity inclined at an angle of 45° to the downstream direc-
tion, referred to as legs and one span-wise rod of vorticity,
the head. Considering the experimental observation that
the span-wise correlation of u is confined to Ay =~ d. in
the outer part of the boundary layer, the span-wise ex-
tent of the computational domain was conservatively set
to 44, divided into 100 equally spaced grid points. Near
the wall, the experimental span-wise correlation decays
to zero even faster. The stream-wise extent of the com-
putational box was set to 206 with 4096 equally spaced
grid points. Based on some preliminary calculations of
spectra, Perry & Marusic[6] suggested that this simple
shape with Q*D = 1 in (6) may be a good candidate
for the representative eddy in a zero-pressure-gradient
boundary layer flow.

Results and Discussion

Correlation Profiles

Marusic[4] showed that incorporating the concept of hair-
pin vortex packets of Adrian et al.[1] in the attached eddy
model gives a good qualitative prediction of the char-
acteristics of auto-correlation and two-point space-time
cross-correlation near the wall. Complementary to this,
our analysis on this occasion will be limited to the outer
region of the boundary layer beyond where the log-law
of the wall holds. Experimental correlation profiles at
various 2z in the outer part of the boundary layer corre-
sponding to Re,=1655 with Az*=0.10, 0.15, 0.20, 0.25
and 0.30 are shown in figure 3. An interesting point can
be noted by considering the position 2% & 0.54. It can
be seen that the profile with Az*=0.30 begins to develop
a kink which evolves into a negative peak in the Rap
profile at 2%=0.77 and culminates into a Mexican Hat
like appearance. Similar evolution is observed for the
profiles corresponding to Az*=0.25 and 0.20, though at
different 2. But, though the ultimate appearance of
all of the profiles at 2z ~ 1 is more or less identical,
this evolution process is not distinct with Az*=0.10 and
0.15. The emergence of the negative Rap can be at-
tributed to the existence of a span-wise vortex element
(the head) with the probes at A and B being on the
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Figure 3: Effect of wall normal separation on the exper-
imental space-time correlation profiles at Re,=1655.

lower and upper side of the vortex. This conjecture is
supported by the results in figure 4 where Rap profiles
computed using the attached eddy model for a range of
hierarchy length scales of simple II-eddies, with r5=0.05
(ro = ro/d) and Az*=0.15, are shown with the exper-
imental profiles corresponding to Az*=0.30. It can be
seen that the experimental and computational profiles
are going through remarkably similar qualitative evolu-
tions as the probe system is moved towards the edge of
the boundary layer. Simulations were carried out with a
wide range of r§ and Az* values and it was found that
the detection of the evolution as depicted in figure 4 re-
quires a certain relationship between r§5 and Az*. Based
on this and from further evidence to be presented later,
it appears that these two experimental and simulation
cases represent comparable eddy core-radii to Az™ ra-
tios. Based on this conclusion, it should be noted that
ideally a check is made with a model calculation with
Az*=0.30 and r5=0.10. However, large core-radii with
simple Gaussian distributions of vorticity, combined with
large Az* values lead to numerical difficulties in the form
of singularities. New improved calculation schemes are
presently being attempted to overcome this difficulty.

Optimum Correlation

Let &, be the value of £ where Rap is maximum.
This gives Rag[&ém,Az"] which is defined as the opti-
mum correlation. The profiles of the optimal correlation
RaB[&m, Az"] computed using both a single representa-
tive eddy length scale and a range of eddy length scales
are shown in figure 5. One can see that in case of a single
eddy length scale, there is hardly any effect of Az* for
Zy + Az" < 6, as would be expected (here length scales
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Figure 4: Trends of the experimental and computational
correlation profiles in the outer part of the boundary
layer. (a) Experiment at Re,=1655 with Az* = 0.30.
(b) Model with r5 = 0.05 and Az* = 0.15.
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Figure 5: Dependence of the optimal correlation on the
wall-normal separation for a given core radius r5 = 0.05
corresponding to: (a) A single representative structure
of one length scale. (b) A range of eddy length scales.

are normalized by the representative eddy length scale
0). However, a significant Az* dependence exists when
we consider the case with a range of eddy length scales
which, in fact, resembles qualitatively the experimental
pattern as shown in figure 6. Comparing figures 5(b) and
6(a), we see that for Az* equal to 0.10 and 0.15, the opti-
mal Rap exhibits a constant value in the middle portion
of the boundary layer. Similar calculations using various
rg and Az* show that the appearance of this constant
value occurs when we have Az* ~ r§. A larger ratio
causes the profiles to lean forward towards the abscissa
while a smaller ratio causes the opposite effect. The fact
that the simulations with a single representative struc-
ture do not show any such features indicates that the
effect is due to the existence of a range of geometrically
similar length scales. The experimental optimum Rap
at Re,=4705 (figure 6(b)) shows that a similar profile
results for a smaller Az* of 0.10. Now in line with the
earlier observations, this could suggest that the eddies
become skinnier as the Reynolds number is increased.
This trend would not be expected to persist at higher
Reynolds numbers, as the ratio should be constant as
Re, becomes very large, in line with Reynolds number
similarity.

253



>
>
5
4
4
S
03
9

W 06 F Tk ta °
« Y

29

x A
3

Lt
¥ a8 oy
o ﬁ” .
.a@éiﬁéf
0.2

%00
.

et

oAz =012
+Az =015
o | saz =020
AAZ =025
x Az =030

00, o
9000640

°
k]
"
5
a
&
N e
0%

w00

i
Q&R Tt bt R

Pk

0.4
Ry &, 47]

Figure 6: (a) Variation of Rap[ém,Az*] across
the boundary layer at Re,=1655 for different Az™.

(b) Reynolds number dependence of Rap[{m,Az].
0O:A2z"=0.10; A:Az*=0.15; +:Az*=0.10.
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Figure 7: Variation of Rap[&m, Az"] across the boundary
layer for the DNS channel flow data with Az*=0.10, 0.15,
0.20, 0.25, 0.30, 0.35 and 0.40.

Optimum correlations calculated from the DNS data are
shown in figure 7 corresponding to various wall-normal
separations Az" of 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and
0.40. The DNS results are calculated using the channel
flow data of Moser, Kim & Mansour[5] corresponding to
Rer =590. The results represent statistics averaged over
74 time-steps. It is obvious from figure 7 that the pro-
files corresponding to different Az* follow the trends as
found in the experiment and in the attached eddy sim-
ulation results. In this case, the profile corresponding
to Az*=0.20 shows a considerable region of constant op-
timum Rap and profiles corresponding to a larger Az*
than this seem to lean forward while those corresponding
to a smaller Az* lean backward. Following the earlier ar-
guments it can be conjectured that the non-dimensional
eddy core-radius in the DNS case is approximately 0.20.
Now considering the Re, values of the DNS case this
seems to be a plausible value. However, the nature of the
optimum correlation profiles near the edge of the layer
(for z + Az™ =~ 1) seems to be different from the bound-
ary layer cases (both experiment and simulation). This
is expected since the channel flow will not have the in-
termittent nature of turbulence which will be present in
the flat plate boundary layer flow.

Conclusions

Various trends observed in the outer region (beyond the
logarithmic region) of a zero pressure gradient boundary
layer can be attributed to eddies with geometries which
can be approximated by a simple II structure. The statis-
tics are found to be dependent on the Reynolds num-
ber of the flow which seems to affect the core-diameter
of the constituent eddies; in a higher Reynolds number
flow the eddies seem to be more stretched with a smaller

core radius. Subsequently, the postdiction of two-point
correlation statistics must take into account the wall-
normal separation to eddy core-radius ratio. The two-
point statistics in a channel flow showed similar trends
except near the edge of the layer.
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