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Abstract

Two point space-time correlations of velocity fluctuations
have long been viewed as containing a wealth of informa-
tion about the geometric and statistical structure of ed-
dies in turbulent flows. In this paper, an attempt is made
to interpret these measurements in light of Townsend’s
attached eddy hypothesis. Both numerical (DNS) and
experimental data are considered. The experiments were
carried out at two different Reynolds numbers in order to
interpret the Reynolds number effects in terms of eddy
geometry. The DNS data set comes from the channel flow
simulation of Moser, Kim & Mansour[5]. A simulation
based on the attached eddy hypothesis tests a conjec-
ture for certain geometric and dynamic properties of the
constituent eddies, by comparing the statistics gathered
from experiment and DNS.

Introduction

Two point space-time correlations of velocity have been
recognized as a potential tool for the eduction of the or-
ganized events or the coherent structures. While vari-
ous opinions exist as to the exact definition of coherent
structures and the details of their geometric, kinematic
and dynamic characteristics, the prevailing consensus is
that coherent structures play a dominant role in trans-
port phenomena in turbulent flows. In this paper var-
ious aspects of two-point velocity correlation measure-
ments are examined in light of the attached eddy model
of wall turbulence, first proposed by Townsend[10] and,
later realized into a phenomenological model by Perry &
Chong[7]. Since then, this model has been scrutinized
and refined by Perry & coworkers ([6, 8]) and the model
has been found to be successful in providing a framework
in which to interpret the mean statistics in wall turbu-
lence. However, this work was primarily confined to sin-
gle point statistics like mean velocity, Reynolds stresses
and spectra. The major aim of this paper is to interpret
two point statistics in the spirit of the attached eddy
model.
Starting from the equations of motion, Theodorsen[9],
with some intuitive arguments, proposed that a turbu-
lent shear flow consists of horseshoe-vortices inclined in
the flow-direction at an average angle of 450. These
ideas are consistent with the attached eddy model of
Townsend[10] where a turbulent boundary layer is viewed
as being composed of a range of geometrically similar
(attached) eddies originating from the wall, with rep-
resentative lengths scaling with the distance from the
wall. Later, Head & Bandyopadhyay[3] showed by very
convincing flow-visualization studies with smoke that a
turbulent boundary layer appears to consist of a ‘forest’
of hairpin vortices which lean in the downstream direc-
tion at approximately 450. These vortices may loosely
be termed (attached) eddies or simply eddies. Recent
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by Adrian and coworkers using high resolution
PIV measurements ([2, 1]) have revealed that the
ry layer is thickly populated with hairpin vortices
ppear in groups (packets). Adrian, Meinhart &
s[2] showed that the structural information con-
n the two-point correlation can be associated with
sence of hairpin vortex packets. In spite of minor
ces in the details of the interpretation, this can be
d as the most convincing experimental evidence in
of the attached eddy model. In a complementary

ational study, Marusic[4] showed that by incor-
g the scenario of packets into the attached eddy
some temporal statistics observed in a boundary
n be validated for the region of the flow where

arithmic law of the wall holds. In this paper ex-
tal and computational investigations will be pre-

in an attempt to explain the characteristics of var-
pects of two point correlation measurements, in-
the Reynolds number dependence of these statis-
the geometric structure of the eddies. The focus

tudy will be in the outer region of the flow, de-
ere tentatively as the outer 80% of the boundary
ickness.

periment

paper, we define x, y and z as the stream-wise,
ise and wall-normal directions respectively; while
tuating velocities in these directions are denoted
and w. Any length scale ` is normalized by the
ry layer thickness δc, if not otherwise stated, and
as `∗ ≡ `/δc. The experiment was carried out in

nally zero pressure gradient, open return, blower
ind tunnel having a working section of 940 mm
mm and a length of 4400 mm, with two normal
e sensors as shown schematically in figure 1. The
robe will be referred to as the probe A, and the
ne as probe B. For all measurements the stream-
paration between the probes (∆x∗) was kept at
hile various wall normal separations (∆z∗) were
wo flow cases with Reτ ≡ uτδc/ν equal to 1655
5 were considered. Here uτ is the friction veloc-
ν is the kinematic viscosity. With reference to
, the coefficient of two-point space-time normal-
ss-correlation RAB of the fluctuating velocities at
∗
A, z∗A, t) and B(x∗A +∆x∗, y∗A +∆y∗, z∗A +∆z∗, t+
be written as

[x∗A, y∗A, z∗A, ∆x∗, ∆y∗, ∆z∗, τ ] =
uA uB√
u2

A

√
u2

B

(1)

A and uB represent the fluctuating components
tream-wise velocities at A and B respectively, τ
nts the time-shift parameter and overbars denote
le time averages. Although the use of Taylor’s
esis in flows with strong shear has been the is-
uch debate, Uddin, Perry & Marusic[11] showed
en Taylor’s hypothesis is used in transforming a
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Figure 1: Schematic of experiment and definition of the
terms.

temporal-shift τ to a spatial-shift ∆x in two-point cross-
correlation measurements, an inappreciable error is en-
countered. Now using Taylor’s hypothesis, and choosing
the position A as the origin of the coordinate system,
with ∆y∗=0 always, we can write (1) as:

RAB [ξ, ∆z∗] =
uA uB√
u2

A

√
u2

B

. (2)

The non-dimensional parameter ξ can be defined, in
terms of Uc, the convection velocity, and δc, as

ξ = ∆x∗ − τUc

δc
. (3)

For convenience, let ξ0 denote the special case when
τ = 0, i.e. ξ0 = ∆x∗. Note that for all results to fol-
low, a constant convection velocity equal to 82% of the
mean free-stream velocity is used (as suggested by Uddin
et al.[11]).

The Attached Eddy Computation

In general, the induced stream-wise velocity field, U , due
to a representative eddy of scale δ and its image in the
wall can be written as

U

U0
= f [

x

δ
,
y

δ
,
z

δ
] (4)

where U0 is the characteristic velocity scale. This veloc-
ity field can be computed using the Biot-Savart integral.
A Gaussian distribution of vorticity within the core of
the vortex filaments is assumed. Let ψA[k1δ, y/δ, z/δ]
and ψB [k1δ, y/δ, z/δ] denote the one dimensional Fourier
transform (in the stream-wise direction) of the fluctuat-
ing components of the velocity functions fA and fB at
A and B respectively. Then, following the analysis given
by Marusic[4], the normalized correlation RAB can be
written as:

RAB [ξ0, ∆z∗] =
R′AB [ξ0, ∆z∗]√

R′AA[0, 0] R′BB [0, 0]
(5)

where R′AB is defined as

R′AB [ξ0, ∆z∗] =
U2

0
λxλy

∫∞
−∞

∫ δc

δ1

∫∞
−∞ ψ∗A ψB Q2[ δ

δc
] ×

D[ δ
δc

] 1
δ

d( 1
δ
) dδ d(k1δ) (6)

where the asterisk denotes a complex conjugate, and λx

and λy are geometric constants relating to the random
distribution of eddy length scales in the boundary layer.
The limits δ1 and δc denote the smallest and the largest
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Figure 2: Sketch of a simple Π eddy.

cales considered which are assumed to be equal to

τ and the boundary layer thickness respectively.
ctions Q and D are weighting functions as defined
y & Marusic[6]. Q accounts for the variation of
length scale for different δ’s, and D accounts for

arture of the eddy length scale distribution p.d.f
-1 power law and how the p.d.f on the (x, y, 0)
varies with δ.

gh the numerical simulations were carried out with
eddy geometries, results corresponding to a sim-
y geometry, referred to as a Π-eddy (as in figure 2),
presented. This simple eddy consists of two pre-
nt types of structure; there are two rods of vortic-
ined at an angle of 450 to the downstream direc-
ferred to as legs and one span-wise rod of vorticity,
d. Considering the experimental observation that
n-wise correlation of u is confined to ∆y ≈ δc in
er part of the boundary layer, the span-wise ex-
the computational domain was conservatively set
ivided into 100 equally spaced grid points. Near
l, the experimental span-wise correlation decays
even faster. The stream-wise extent of the com-
nal box was set to 20δ with 4096 equally spaced
ints. Based on some preliminary calculations of
, Perry & Marusic[6] suggested that this simple
ith Q2D = 1 in (6) may be a good candidate
representative eddy in a zero-pressure-gradient
ry layer flow.

and Discussion

tion Profiles

c[4] showed that incorporating the concept of hair-
tex packets of Adrian et al.[1] in the attached eddy
gives a good qualitative prediction of the char-
ics of auto-correlation and two-point space-time
rrelation near the wall. Complementary to this,
lysis on this occasion will be limited to the outer
of the boundary layer beyond where the log-law
wall holds. Experimental correlation profiles at
z∗A in the outer part of the boundary layer corre-
g to Reτ=1655 with ∆z∗=0.10, 0.15, 0.20, 0.25
0 are shown in figure 3. An interesting point can
d by considering the position z∗A ≈ 0.54. It can
that the profile with ∆z∗=0.30 begins to develop
which evolves into a negative peak in the RAB

at z∗A=0.77 and culminates into a Mexican Hat
pearance. Similar evolution is observed for the
corresponding to ∆z∗=0.25 and 0.20, though at
t z∗A. But, though the ultimate appearance of
he profiles at z∗A ≈ 1 is more or less identical,
lution process is not distinct with ∆z∗=0.10 and
he emergence of the negative RAB can be at-

d to the existence of a span-wise vortex element
ad) with the probes at A and B being on the
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Figure 3: Effect of wall normal separation on the exper-
imental space-time correlation profiles at Reτ=1655.

lower and upper side of the vortex. This conjecture is
supported by the results in figure 4 where RAB profiles
computed using the attached eddy model for a range of
hierarchy length scales of simple Π-eddies, with r∗0=0.05
(r∗0 ≡ r0/δ) and ∆z∗=0.15, are shown with the exper-
imental profiles corresponding to ∆z∗=0.30. It can be
seen that the experimental and computational profiles
are going through remarkably similar qualitative evolu-
tions as the probe system is moved towards the edge of
the boundary layer. Simulations were carried out with a
wide range of r∗0 and ∆z∗ values and it was found that
the detection of the evolution as depicted in figure 4 re-
quires a certain relationship between r∗0 and ∆z∗. Based
on this and from further evidence to be presented later,
it appears that these two experimental and simulation
cases represent comparable eddy core-radii to ∆z∗ ra-
tios. Based on this conclusion, it should be noted that
ideally a check is made with a model calculation with
∆z∗=0.30 and r∗0=0.10. However, large core-radii with
simple Gaussian distributions of vorticity, combined with
large ∆z∗ values lead to numerical difficulties in the form
of singularities. New improved calculation schemes are
presently being attempted to overcome this difficulty.

Optimum Correlation

Let ξm be the value of ξ where RAB is maximum.
This gives RAB [ξm, ∆z∗] which is defined as the opti-
mum correlation. The profiles of the optimal correlation
RAB [ξm, ∆z∗] computed using both a single representa-
tive eddy length scale and a range of eddy length scales
are shown in figure 5. One can see that in case of a single
eddy length scale, there is hardly any effect of ∆z∗ for
z∗A + ∆z∗ < δ, as would be expected (here length scales
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4: Trends of the experimental and computational
ion profiles in the outer part of the boundary
(a) Experiment at Reτ=1655 with ∆z∗ = 0.30.
el with r∗0 = 0.05 and ∆z∗ = 0.15.
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(b))

5: Dependence of the optimal correlation on the
rmal separation for a given core radius r∗0 = 0.05
onding to: (a) A single representative structure
ength scale. (b) A range of eddy length scales.

malized by the representative eddy length scale
wever, a significant ∆z∗ dependence exists when
sider the case with a range of eddy length scales
in fact, resembles qualitatively the experimental
as shown in figure 6. Comparing figures 5(b) and

e see that for ∆z∗ equal to 0.10 and 0.15, the opti-

B exhibits a constant value in the middle portion
oundary layer. Similar calculations using various
∆z∗ show that the appearance of this constant
ccurs when we have ∆z∗ ≈ r∗0 . A larger ratio
the profiles to lean forward towards the abscissa
smaller ratio causes the opposite effect. The fact
e simulations with a single representative struc-
not show any such features indicates that the
due to the existence of a range of geometrically
length scales. The experimental optimum RAB

=4705 (figure 6(b)) shows that a similar profile
for a smaller ∆z∗ of 0.10. Now in line with the
observations, this could suggest that the eddies
skinnier as the Reynolds number is increased.

end would not be expected to persist at higher
ds numbers, as the ratio should be constant as
comes very large, in line with Reynolds number
ty.
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layer for the DNS channel flow data with ∆z∗=0.10, 0.15,
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Optimum correlations calculated from the DNS data are
shown in figure 7 corresponding to various wall-normal
separations ∆z∗ of 0.10, 0.15, 0.20, 0.25, 0.30, 0.35 and
0.40. The DNS results are calculated using the channel
flow data of Moser, Kim & Mansour[5] corresponding to
Reτ ≈590. The results represent statistics averaged over
74 time-steps. It is obvious from figure 7 that the pro-
files corresponding to different ∆z∗ follow the trends as
found in the experiment and in the attached eddy sim-
ulation results. In this case, the profile corresponding
to ∆z∗=0.20 shows a considerable region of constant op-
timum RAB and profiles corresponding to a larger ∆z∗

than this seem to lean forward while those corresponding
to a smaller ∆z∗ lean backward. Following the earlier ar-
guments it can be conjectured that the non-dimensional
eddy core-radius in the DNS case is approximately 0.20.
Now considering the Reτ values of the DNS case this
seems to be a plausible value. However, the nature of the
optimum correlation profiles near the edge of the layer
(for z∗A +∆z∗ ≈ 1) seems to be different from the bound-
ary layer cases (both experiment and simulation). This
is expected since the channel flow will not have the in-
termittent nature of turbulence which will be present in
the flat plate boundary layer flow.

Conclusions

Various trends observed in the outer region (beyond the
logarithmic region) of a zero pressure gradient boundary
layer can be attributed to eddies with geometries which
can be approximated by a simple Π structure. The statis-
tics are found to be dependent on the Reynolds num-
ber of the flow which seems to affect the core-diameter
of the constituent eddies; in a higher Reynolds number
flow the eddies seem to be more stretched with a smaller
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dius. Subsequently, the postdiction of two-point
ion statistics must take into account the wall-
separation to eddy core-radius ratio. The two-

tatistics in a channel flow showed similar trends
near the edge of the layer.

ledgement

thors wish to thank Professor Robert Moser, Uni-
of Illinois, Urbana-Champagne, for kindly making
le the DNS data. Support from the National Sci-
undation is gratefully acknowledged.

ces

rian, R. J., Meinhart, C. D., & Tomkins, C. D.
00). Vortex organization in the outer region of

e turbulent boundary layer. Journal of Fluid Me-
anics 422, 1–54.

ristensen, K. T. & Adrian, R. J. (2001). Statis-
al evidence of hairpin vortex packets in wall tur-
lence. Journal of Fluid Mechanics 431, 433–443.

ad, M. R. & Bandyopadhyay, P. (1981). New as-
cts of turbulent boundary-layer structure. Journal
Fluid Mechanics 107, 297–338.

arusic, I. (2001). On the role of large-scale struc-
res in wall turbulence. Physics of Fluids 13, 735–
3.

oser, R. D., Kim, J. & Mansour, N. N. (1999).
rect numerical simulation of channel flow up to

τ=590 Physics of Fluids 11, 943–945.

rry, A. E. & Marusic, I. (1995). A wall-wake
del for the turbulence structure of boundary lay-
. Part 1. Journal of Fluid Mechanics 298, 361–
8.

rry, A. E. & Chong, M. S. (1982). On the mecha-
m of wall turbulence. Journal of Fluid Mechanics
9, 173–217.

rry, A. E., Henbest, S. M & Chong, M. S. (1986).
theoretical and experimental study of wall turbu-
ce. Journal of Fluid Mechanics 165, 163–199.

eodorsen, T. (1952). Mechanism of turbulence. In
oc. Second Midwestern Conference on Fluid Me-
anics, The Ohio State University, March 17-19,
52.

wnsend, A. A. (1956). The Structure of Turbulent
ear Flow. Cambridge University Press.

din, A. K. M., Perry, A. E., & Marusic, I. (1997).
the validity of Taylor’s hypothesis in wall turbu-

ce. Journal of Mech. Engg Res. and Dev. 19-20,
–66.


	Welcome Page
	Hub Page
	Table of Contents Entry of this Manuscript
	Brief Author Index
	Detailed Author Index
	------------------------------
	Abstracts Book
	Abstracts Card for this Manuscript
	------------------------------
	Next Manuscript
	Preceding Manuscript
	------------------------------
	Previous View
	------------------------------
	New Search
	Next Search Hit
	Previous Search Hit
	Search Results
	------------------------------
	Also by I. Marusic
	------------------------------

